霍普夫分叉
极限环
分叉理论的生物学应用
气动弹性
范德波尔振荡器
分叉
极限(数学)
分岔图
常微分方程
控制理论(社会学)
鞍结分岔
风洞
微分方程
计算机科学
数学
应用数学
空气动力学
数学分析
物理
人工智能
非线性系统
机械
量子力学
控制(管理)
作者
K. H. Lee,David A. W. Barton,Ludovic Renson
标识
DOI:10.1016/j.ymssp.2023.110173
摘要
We propose a new hybrid modelling approach that combines a mechanistic model with a machine-learnt model to predict the limit cycle oscillations of physical systems with a Hopf bifurcation. The mechanistic model is an ordinary differential equation normal-form model capturing the bifurcation structure of the system. A data-driven mapping from this model to the experimental observations is then identified based on experimental data using machine learning techniques. The proposed method is first demonstrated numerically on a Van der Pol oscillator and a three-degree-of-freedom aeroelastic model. It is then applied to model the behaviour of a physical aeroelastic structure exhibiting limit cycle oscillations during wind tunnel tests. The method is shown to be general, data-efficient and to offer good accuracy without any prior knowledge about the system other than its bifurcation structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI