Blockage Prediction for Mobile UE in RIS-assisted Wireless Networks: A Deep Learning Approach

计算机科学 基站 无线 非视线传播 实时计算 人工神经网络 用户设备 RGB颜色模型 无线网络 人工智能 路径损耗 计算机网络 模拟 电信
作者
Shakil Ahmed,Ibrahim Abdelmawla,Ahmed E. Kamal,Mohamed Y. Selim
标识
DOI:10.1109/milcom55135.2022.10017894
摘要

Due to significant blockage conditions in wireless networks, transmitted signals may considerably degrade before reaching the receiver. The reliability of the transmitted signals, therefore, may be critically problematic due to blockages between the communicating nodes. Thanks to the ability of Reconfigurable Intelligent Surfaces (RISs) to reflect the incident signals with different reflection angles, this may counter the blockage effect by optimally reflecting the transmit signals to receiving nodes, hence, improving the wireless network's performance. With this motivation, this paper formulates a RIS-aided wireless communication problem from a base station (BS) to a mobile user equipment (UE). The BS is equipped with an RGB camera. We use the RGB camera at the BS and the RIS panel to improve the system's performance while considering signal propagating through multiple paths and the Doppler spread for the mobile UE. First, the RGB camera is used to detect the presence of the UE with no blockage. When unsuccessful, the RIS-assisted gain takes over and is then used to detect if the UE is either “present but blocked” or “absent”. The problem is determined as a ternary classification problem with the goal of maximizing the probability of UE communication blockage detection. We find the optimal solution for the probability of predicting the blockage status for a given RGB image and RIS-assisted data rate using a deep neural learning model. We employ the residual network 18-layer neural network model to find this optimal probability of blockage prediction. Extensive simulation results reveal that our proposed RIS panel-assisted model enhances the accuracy of maximization of the blockage prediction probability problem by over 38% compared to the baseline scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JohnsonTse完成签到,获得积分10
1秒前
Xide完成签到,获得积分10
1秒前
齐齐巴宾发布了新的文献求助10
2秒前
大模型应助lcy采纳,获得30
6秒前
完美世界应助霸业采纳,获得10
6秒前
eli完成签到,获得积分10
6秒前
8秒前
DrLin完成签到,获得积分10
10秒前
11秒前
完美世界应助科研通管家采纳,获得10
12秒前
Noldor应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
13秒前
Noldor应助科研通管家采纳,获得10
13秒前
淡淡尔冬应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
vicky完成签到,获得积分10
13秒前
15秒前
小猪少年呆呆完成签到 ,获得积分10
15秒前
打打应助方安采纳,获得10
16秒前
我是老大应助1111采纳,获得10
17秒前
17秒前
18秒前
lanxinyue应助cookieMichael采纳,获得60
19秒前
开朗的夜山完成签到,获得积分10
20秒前
霸业发布了新的文献求助10
21秒前
核桃核桃发布了新的文献求助10
21秒前
123完成签到 ,获得积分10
21秒前
22秒前
孺子完成签到 ,获得积分10
23秒前
25秒前
阡陌发布了新的文献求助10
27秒前
栗子完成签到,获得积分10
28秒前
深情安青应助Tree采纳,获得10
28秒前
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152014
求助须知:如何正确求助?哪些是违规求助? 2803297
关于积分的说明 7853218
捐赠科研通 2460777
什么是DOI,文献DOI怎么找? 1310024
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601765