Graph Attention U-Net for Retinal Layer Surface Detection and Choroid Neovascularization Segmentation in OCT Images

计算机科学 人工智能 视网膜 分割 黄斑变性 连接组学 模式识别(心理学) 计算机视觉 连接体 眼科 医学 神经科学 生物 功能连接
作者
Yuhe Shen,Jiang Li,Weifang Zhu,Kai Yu,Meng Wang,Yuanyuan Peng,Yi Zhou,Liling Guan,Xinjian Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3140-3154 被引量:9
标识
DOI:10.1109/tmi.2023.3240757
摘要

Choroidal neovascularization (CNV) is a typical symptom of age-related macular degeneration (AMD) and is one of the leading causes for blindness. Accurate segmentation of CNV and detection of retinal layers are critical for eye disease diagnosis and monitoring. In this paper, we propose a novel graph attention U-Net (GA-UNet) for retinal layer surface detection and CNV segmentation in optical coherence tomography (OCT) images. Due to retinal layer deformation caused by CNV, it is challenging for existing models to segment CNV and detect retinal layer surfaces with the correct topological order. We propose two novel modules to address the challenge. The first module is a graph attention encoder (GAE) in a U-Net model that automatically integrates topological and pathological knowledge of retinal layers into the U-Net structure to achieve effective feature embedding. The second module is a graph decorrelation module (GDM) that takes reconstructed features by the decoder of the U-Net as inputs, it then decorrelates and removes information unrelated to retinal layer for improved retinal layer surface detection. In addition, we propose a new loss function to maintain the correct topological order of retinal layers and the continuity of their boundaries. The proposed model learns graph attention maps automatically during training and performs retinal layer surface detection and CNV segmentation simultaneously with the attention maps during inference. We evaluated the proposed model on our private AMD dataset and another public dataset. Experiment results show that the proposed model outperformed the competing methods for retinal layer surface detection and CNV segmentation and achieved new state of the arts on the datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无限的晓凡完成签到,获得积分10
1秒前
2秒前
SiO2发布了新的文献求助10
2秒前
空空完成签到,获得积分10
2秒前
3秒前
斯文败类应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得30
5秒前
田様应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
benben应助科研通管家采纳,获得10
5秒前
5秒前
chenfaju发布了新的文献求助10
5秒前
5秒前
YEM发布了新的文献求助10
6秒前
光夜发布了新的文献求助10
6秒前
小土豆发布了新的文献求助30
6秒前
认真飞瑶发布了新的文献求助10
6秒前
田様应助anna采纳,获得10
8秒前
shinn发布了新的文献求助10
8秒前
传奇3应助文艺摩托采纳,获得10
12秒前
13秒前
Winnie完成签到 ,获得积分10
14秒前
15秒前
16秒前
从容的香露完成签到,获得积分10
16秒前
zz完成签到,获得积分20
18秒前
18秒前
18秒前
汤姆发布了新的文献求助10
19秒前
太上老君发布了新的文献求助10
20秒前
thalia完成签到,获得积分10
20秒前
Wl0115发布了新的文献求助30
20秒前
牢大完成签到 ,获得积分10
21秒前
小姜发布了新的文献求助10
21秒前
xxxllllll发布了新的文献求助10
22秒前
ffffffflzx666完成签到,获得积分10
22秒前
赘婿应助zz采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602