Stochastic user equilibrium based spatial-temporal distribution prediction of electric vehicle charging load

可达性 电动汽车 计算机科学 Dijkstra算法 趋同(经济学) 网格 数学优化 电力系统 充电站 功率(物理) 模拟 实时计算 最短路径问题 算法 数学 图形 经济 物理 理论计算机科学 量子力学 经济增长 几何学
作者
Ke Liu,Yanli Liu
出处
期刊:Applied Energy [Elsevier]
卷期号:339: 120943-120943 被引量:5
标识
DOI:10.1016/j.apenergy.2023.120943
摘要

As the number of electric vehicles (EVs) connected to the grid increases, the EV electricity demand rises dramatically, affecting the grid’s planning and operation and deepening the coupling of the power and transportation systems. Therefore, accurate spatial–temporal distribution prediction of EV charging load is vital for both power system and coupled power-transportation system studies. This paper proposes a novel method based on stochastic user equilibrium (SUE) for predicting the accurate spatial–temporal distribution of EV charging load synchronized with traffic states. A prediction framework of EV charging load based on SUE and trip chain is proposed, which can effectively reflect the actual behavior of EVs in synchronous traffic states. Then, the extended logit-based SUE and equivalent mathematical model are proposed to obtain more detailed traffic states with intersection turning flows and delays. Meanwhile, the unified reachability and charging models are established to ensure that the trip chain is reachable and the charging characteristics are suitable for different EV types. Finally, the method of the successive averages (MSA) and the Dijkstra-based K-shortest paths algorithms are integrated to solve the proposed framework iteratively with stable convergence. Test results on a realistic traffic network show that the proposed method can effectively reflect the charging and trip characteristics of different EV types while ensuring reachability. And it can also accurately predict the overall and individual EV travel costs and total charging loads in detailed synchronous traffic states. In particular, even in the case of high EV penetration with higher peak-to-valley differences and charging demand, the convergence of the prediction is still stable with even more remarkable prediction effectiveness, especially during peak load hours. Furthermore, the quantitative analysis based on proposed criticality indexes reveals that traffic network failures will affect the network-wide traffic states and EV charging loads with different node-level impact characteristics, which should be considered in joint power-transportation restoration scheduling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hongsong发布了新的文献求助10
1秒前
勤恳马里奥完成签到,获得积分0
2秒前
2秒前
yzy发布了新的文献求助10
2秒前
3秒前
3秒前
科目三应助AA采纳,获得10
3秒前
3秒前
Elaine发布了新的文献求助10
3秒前
Elaine发布了新的文献求助10
3秒前
Elaine发布了新的文献求助10
3秒前
Elaine发布了新的文献求助10
3秒前
roy完成签到 ,获得积分10
4秒前
Akashi发布了新的文献求助10
4秒前
李爱国应助茂密的头发采纳,获得10
4秒前
张时婕完成签到 ,获得积分10
4秒前
小胖鱼发布了新的文献求助10
4秒前
不许焦绿o完成签到,获得积分10
5秒前
pcr163应助zhanzhanzhan采纳,获得50
5秒前
5秒前
SweepingMonk应助EthanChan采纳,获得10
5秒前
爆米花应助二豆子0采纳,获得10
6秒前
科研通AI5应助Mian采纳,获得10
6秒前
CodeCraft应助酒九采纳,获得10
6秒前
星辰大海应助不喝可乐采纳,获得10
6秒前
6秒前
7秒前
WJ发布了新的文献求助10
7秒前
JamesPei应助落寞的紫山采纳,获得10
7秒前
平常的不平完成签到,获得积分10
8秒前
系统提示发布了新的文献求助10
8秒前
盛yyyy完成签到,获得积分10
8秒前
合适山河发布了新的文献求助10
9秒前
周星星完成签到 ,获得积分10
9秒前
NexusExplorer应助潦草采纳,获得10
9秒前
ZHEN发布了新的文献求助10
10秒前
艺玲发布了新的文献求助10
11秒前
dddddddio完成签到 ,获得积分10
11秒前
11秒前
gaos发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740