RelpNet

计算机科学 节点(物理) 图形 理论计算机科学 拓扑(电路) 数学 组合数学 结构工程 工程类
作者
Ensen Wu,Hongyan Cui,Zunming Chen
标识
DOI:10.1145/3511808.3557430
摘要

Node-based link prediction methods have occupied a dominant position in the graph link prediction task. These methods commonly aggregate node features from the subgraph to generate the potential link representation. However, in constructing subgraphs, these methods extract each node's local neighborhood from the target node pair separately without considering the correlation between them and the whole node pair. As a result, many nodes in the subgraph may have little contribution to predicting the potential edge. Aggregating these node features will reduce the model's accuracy and efficiency. In addition, these methods indirectly represent the potential link by the node embeddings in the subgraph. We argue that this formalism is not the best choice for link prediction. In this paper, we propose a relation-based link prediction neural network named RelpNet, which aggregates edge features along the structural interactions between two target nodes and directly represents their relationship. RelpNet first extracts paths between the target node pair as structural interactions, which have strong correlations with the whole node pair and fewer nodes and edges than node-based methods' subgraph. To aggregate edge embeddings along the links between edges, we propose transforming the paths into a line graph. Then, the Tree-LSTM model is adopted to transfer and aggregate the node embeddings in the line graph as a comprehensive representation of the target node pair. We evaluate RelpNet on 7 benchmark datasets against 15 popular and state-of-the-art approaches, and the results demonstrate its significant superiority and high training efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤独的聪展完成签到,获得积分10
2秒前
3秒前
3秒前
李健的小迷弟应助Lisa田采纳,获得20
3秒前
3秒前
邓年念完成签到,获得积分10
6秒前
6秒前
Windsea完成签到,获得积分10
6秒前
李健应助苟文锋采纳,获得10
7秒前
何雨航发布了新的文献求助10
7秒前
8秒前
8秒前
Lucas应助lily采纳,获得10
9秒前
9秒前
lhr关闭了lhr文献求助
9秒前
10秒前
11秒前
12秒前
隐形曼青应助科研进化中采纳,获得10
12秒前
顶上之战发布了新的文献求助30
13秒前
千早爱音应助123采纳,获得10
15秒前
15秒前
chenmeimei2012完成签到 ,获得积分10
16秒前
16秒前
John发布了新的文献求助10
17秒前
18秒前
苟文锋发布了新的文献求助10
19秒前
20秒前
eating完成签到,获得积分10
21秒前
Windsea发布了新的文献求助10
22秒前
22秒前
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得10
22秒前
清脆天空发布了新的文献求助10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
及禾应助科研通管家采纳,获得20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452