RelpNet

计算机科学 节点(物理) 图形 理论计算机科学 拓扑(电路) 数学 组合数学 结构工程 工程类
作者
Ensen Wu,Hongyan Cui,Zunming Chen
标识
DOI:10.1145/3511808.3557430
摘要

Node-based link prediction methods have occupied a dominant position in the graph link prediction task. These methods commonly aggregate node features from the subgraph to generate the potential link representation. However, in constructing subgraphs, these methods extract each node's local neighborhood from the target node pair separately without considering the correlation between them and the whole node pair. As a result, many nodes in the subgraph may have little contribution to predicting the potential edge. Aggregating these node features will reduce the model's accuracy and efficiency. In addition, these methods indirectly represent the potential link by the node embeddings in the subgraph. We argue that this formalism is not the best choice for link prediction. In this paper, we propose a relation-based link prediction neural network named RelpNet, which aggregates edge features along the structural interactions between two target nodes and directly represents their relationship. RelpNet first extracts paths between the target node pair as structural interactions, which have strong correlations with the whole node pair and fewer nodes and edges than node-based methods' subgraph. To aggregate edge embeddings along the links between edges, we propose transforming the paths into a line graph. Then, the Tree-LSTM model is adopted to transfer and aggregate the node embeddings in the line graph as a comprehensive representation of the target node pair. We evaluate RelpNet on 7 benchmark datasets against 15 popular and state-of-the-art approaches, and the results demonstrate its significant superiority and high training efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AA完成签到,获得积分10
刚刚
nuonuoweng完成签到,获得积分10
1秒前
1秒前
大个应助嗯啊采纳,获得10
2秒前
wdwa完成签到,获得积分20
2秒前
极光发布了新的文献求助10
3秒前
萱萱完成签到,获得积分10
3秒前
AA发布了新的文献求助20
3秒前
3秒前
天天快乐应助梅子酒采纳,获得10
4秒前
荔枝的油饼iKun完成签到,获得积分10
5秒前
6秒前
传奇3应助Yc丶小橘采纳,获得20
6秒前
一口饺子完成签到,获得积分10
7秒前
33完成签到 ,获得积分10
7秒前
wdwa发布了新的文献求助10
9秒前
~Dreamboat完成签到,获得积分10
10秒前
一口饺子发布了新的文献求助10
11秒前
11秒前
11秒前
14秒前
aerjin完成签到,获得积分20
14秒前
梦里繁花完成签到,获得积分10
14秒前
豆子发布了新的文献求助10
16秒前
西蓝花完成签到,获得积分10
16秒前
北欧海盗完成签到,获得积分10
17秒前
梅子酒发布了新的文献求助10
18秒前
18秒前
20秒前
还单身的电灯胆完成签到 ,获得积分10
20秒前
22秒前
轻松的纸鹤完成签到,获得积分10
22秒前
23秒前
23秒前
DELI发布了新的文献求助30
23秒前
李爱国应助寒冷的奇异果采纳,获得10
24秒前
Yc丶小橘发布了新的文献求助20
25秒前
汉堡包应助尊敬鸵鸟采纳,获得10
25秒前
不配.应助斯文败类虎采纳,获得10
25秒前
25秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178430
求助须知:如何正确求助?哪些是违规求助? 2829406
关于积分的说明 7971391
捐赠科研通 2490784
什么是DOI,文献DOI怎么找? 1327951
科研通“疑难数据库(出版商)”最低求助积分说明 635353
版权声明 602904