RelpNet

计算机科学 节点(物理) 图形 理论计算机科学 拓扑(电路) 数学 组合数学 结构工程 工程类
作者
Ensen Wu,Hongyan Cui,Zunming Chen
标识
DOI:10.1145/3511808.3557430
摘要

Node-based link prediction methods have occupied a dominant position in the graph link prediction task. These methods commonly aggregate node features from the subgraph to generate the potential link representation. However, in constructing subgraphs, these methods extract each node's local neighborhood from the target node pair separately without considering the correlation between them and the whole node pair. As a result, many nodes in the subgraph may have little contribution to predicting the potential edge. Aggregating these node features will reduce the model's accuracy and efficiency. In addition, these methods indirectly represent the potential link by the node embeddings in the subgraph. We argue that this formalism is not the best choice for link prediction. In this paper, we propose a relation-based link prediction neural network named RelpNet, which aggregates edge features along the structural interactions between two target nodes and directly represents their relationship. RelpNet first extracts paths between the target node pair as structural interactions, which have strong correlations with the whole node pair and fewer nodes and edges than node-based methods' subgraph. To aggregate edge embeddings along the links between edges, we propose transforming the paths into a line graph. Then, the Tree-LSTM model is adopted to transfer and aggregate the node embeddings in the line graph as a comprehensive representation of the target node pair. We evaluate RelpNet on 7 benchmark datasets against 15 popular and state-of-the-art approaches, and the results demonstrate its significant superiority and high training efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Liufgui应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
月光入梦完成签到 ,获得积分10
刚刚
烟花应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
领导范儿应助聪明的青雪采纳,获得10
1秒前
2秒前
tql9211发布了新的文献求助10
4秒前
贝壳发布了新的文献求助10
4秒前
人生如梦应助冷傲凝琴采纳,获得10
5秒前
5秒前
Self-made发布了新的文献求助10
7秒前
wanci应助危机的硬币采纳,获得10
8秒前
田様应助三金采纳,获得10
8秒前
科研小狗完成签到,获得积分10
9秒前
9秒前
Owen应助ting采纳,获得10
10秒前
One发布了新的文献求助10
10秒前
慕青应助litingtingting采纳,获得10
10秒前
11秒前
嘉嘉完成签到 ,获得积分10
12秒前
12秒前
Irene发布了新的文献求助10
12秒前
13秒前
14秒前
shinble发布了新的文献求助10
14秒前
爆米花应助紫陌采纳,获得10
16秒前
16秒前
FashionBoy应助Iceberg采纳,获得10
16秒前
云雨发布了新的文献求助10
17秒前
Akim应助PG采纳,获得10
18秒前
18秒前
azz完成签到 ,获得积分10
19秒前
贝壳完成签到,获得积分10
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141198
捐赠科研通 3241162
什么是DOI,文献DOI怎么找? 1791358
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803396