清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DAFA-BiLSTM: Deep Autoregression Feature Augmented Bidirectional LSTM network for time series prediction

计算机科学 时间序列 稳健性(进化) 人工智能 自回归模型 人工神经网络 油藏计算 特征(语言学) 系列(地层学) 模式识别(心理学) 转化(遗传学) 非线性系统 机器学习 循环神经网络 数据挖掘 数学 统计 哲学 生物 量子力学 古生物学 生物化学 物理 语言学 化学 基因
作者
Heshan Wang,Yiping Zhang,Jing Liang,Lili Liu
出处
期刊:Neural Networks [Elsevier]
卷期号:157: 240-256 被引量:89
标识
DOI:10.1016/j.neunet.2022.10.009
摘要

Time series forecasting models that use the past information of exogenous or endogenous sequences to forecast future series play an important role in the real world because most real-world time series datasets are rich in time-dependent information. Most conventional prediction models for time series datasets are time-consuming and fraught with complex limitations because they usually fail to adequately exploit the latent spatial dependence between pairs of variables. As a successful variant of recurrent neural networks, the long short-term memory network (LSTM) has been demonstrated to have stronger nonlinear dynamics to store sequential data than traditional machine learning models. Nevertheless, the common shallow LSTM architecture has limited capacity to fully extract the transient characteristics of long interval sequential datasets. In this study, a novel deep autoregression feature augmented bidirectional LSTM network (DAFA-BiLSTM) is proposed as a new deep BiLSTM architecture for time series prediction. Initially, the input vectors are fed into a vector autoregression (VA) transformation module to represent the time-delayed linear and nonlinear properties of the input signals in an unsupervised way. Then, the learned nonlinear combination vectors of VA are progressively fed into different layers of BiLSTM and the output of the previous BiLSTM module is also concatenated with the time-delayed linear vectors of the VA as an augmented feature to form new additional input signals for the next adjacent BiLSTM layer. Extensive real-world time series applications are addressed to demonstrate the superiority and robustness of the proposed DAFA-BiLSTM. Comparative experimental results and statistical analysis show that the proposed DAFA-BiLSTM has good adaptive performance as well as robustness even in noisy environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG给勤奋的曼香的求助进行了留言
刚刚
4秒前
Ava应助春宇浩然采纳,获得10
16秒前
28秒前
33秒前
情怀应助无情的琳采纳,获得10
33秒前
相当鱼完成签到 ,获得积分10
38秒前
归尘发布了新的文献求助10
46秒前
量子星尘发布了新的文献求助10
49秒前
1分钟前
无情的琳发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zzgpku完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
李健应助天天采纳,获得10
2分钟前
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
3分钟前
逸云发布了新的文献求助30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
球祝完成签到,获得积分10
3分钟前
3分钟前
归尘发布了新的文献求助10
3分钟前
欠缺完成签到,获得积分20
3分钟前
研友_VZG7GZ应助凉宫八月采纳,获得10
3分钟前
逸云完成签到,获得积分10
3分钟前
4分钟前
凉宫八月发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
凉宫八月完成签到,获得积分10
5分钟前
XZY发布了新的文献求助10
5分钟前
顾矜应助Wa1Zh0u采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724137
求助须知:如何正确求助?哪些是违规求助? 5285050
关于积分的说明 15299615
捐赠科研通 4872220
什么是DOI,文献DOI怎么找? 2616750
邀请新用户注册赠送积分活动 1566605
关于科研通互助平台的介绍 1523490