DAFA-BiLSTM: Deep Autoregression Feature Augmented Bidirectional LSTM network for time series prediction

计算机科学 时间序列 稳健性(进化) 人工智能 自回归模型 人工神经网络 油藏计算 特征(语言学) 系列(地层学) 模式识别(心理学) 转化(遗传学) 非线性系统 机器学习 循环神经网络 数据挖掘 数学 统计 哲学 生物 量子力学 古生物学 生物化学 物理 语言学 化学 基因
作者
Heshan Wang,Yiping Zhang,Jing Liang,Lili Liu
出处
期刊:Neural Networks [Elsevier]
卷期号:157: 240-256 被引量:89
标识
DOI:10.1016/j.neunet.2022.10.009
摘要

Time series forecasting models that use the past information of exogenous or endogenous sequences to forecast future series play an important role in the real world because most real-world time series datasets are rich in time-dependent information. Most conventional prediction models for time series datasets are time-consuming and fraught with complex limitations because they usually fail to adequately exploit the latent spatial dependence between pairs of variables. As a successful variant of recurrent neural networks, the long short-term memory network (LSTM) has been demonstrated to have stronger nonlinear dynamics to store sequential data than traditional machine learning models. Nevertheless, the common shallow LSTM architecture has limited capacity to fully extract the transient characteristics of long interval sequential datasets. In this study, a novel deep autoregression feature augmented bidirectional LSTM network (DAFA-BiLSTM) is proposed as a new deep BiLSTM architecture for time series prediction. Initially, the input vectors are fed into a vector autoregression (VA) transformation module to represent the time-delayed linear and nonlinear properties of the input signals in an unsupervised way. Then, the learned nonlinear combination vectors of VA are progressively fed into different layers of BiLSTM and the output of the previous BiLSTM module is also concatenated with the time-delayed linear vectors of the VA as an augmented feature to form new additional input signals for the next adjacent BiLSTM layer. Extensive real-world time series applications are addressed to demonstrate the superiority and robustness of the proposed DAFA-BiLSTM. Comparative experimental results and statistical analysis show that the proposed DAFA-BiLSTM has good adaptive performance as well as robustness even in noisy environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
prince8891发布了新的文献求助10
刚刚
西柚完成签到 ,获得积分10
刚刚
好好完成签到,获得积分10
刚刚
刚刚
cure发布了新的文献求助30
1秒前
1秒前
黄倩倩完成签到,获得积分10
2秒前
舒心谷雪完成签到 ,获得积分10
2秒前
whuyyz完成签到,获得积分10
2秒前
骑士完成签到,获得积分10
2秒前
3秒前
3秒前
云为晓发布了新的文献求助10
3秒前
1111完成签到,获得积分10
3秒前
3秒前
lifeng完成签到 ,获得积分10
3秒前
小马甲应助Xue采纳,获得10
4秒前
4秒前
A1len完成签到,获得积分10
4秒前
哈哈哈哈哈哈完成签到,获得积分10
4秒前
T_Y发布了新的文献求助10
5秒前
5秒前
圆你心安完成签到,获得积分10
5秒前
lililili完成签到,获得积分10
5秒前
thesky完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
ppp完成签到,获得积分10
7秒前
共享精神应助好好学习采纳,获得10
7秒前
2752543083完成签到,获得积分20
7秒前
2526发布了新的文献求助10
7秒前
阿玺完成签到,获得积分10
8秒前
wuli发布了新的文献求助10
8秒前
thesky发布了新的文献求助10
8秒前
8秒前
加油完成签到,获得积分20
8秒前
烟花应助小小雨泪采纳,获得10
9秒前
雾色笼晓树苍完成签到 ,获得积分10
9秒前
李健的小迷弟应助李兴起采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5395898
求助须知:如何正确求助?哪些是违规求助? 4516372
关于积分的说明 14059288
捐赠科研通 4428272
什么是DOI,文献DOI怎么找? 2432028
邀请新用户注册赠送积分活动 1424218
关于科研通互助平台的介绍 1403436