Investigating the efficacy of a fast urban climate model for spatial planning of green and blue spaces for heat mitigation

城市热岛 绿色基础设施 环境科学 城市规划 空间规划 气候变化 环境规划 城市气候 环境资源管理 气象学 地理 土木工程 地质学 工程类 海洋学
作者
Jiayu Chen,Peter M. Bach,Kerry A. Nice,João P. Leitão
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:: 176925-176925
标识
DOI:10.1016/j.scitotenv.2024.176925
摘要

Problems caused by urban heat have prompted the exploration of urban greenery and blue spaces for heat mitigation. Various numerical models can simulate heat-related processes, but their use as support-tools to urban planners remains underexplored, particularly at the city-scale, due to high computational demand and complexity of such models. This study investigates the spatial relationships between urban heat, urban form and urban green and blue spaces with the fast climate model TARGET (The Air-temperature Response to Green/blue-infrastructure Evaluation Tool), which only requires minimal inputs of standard meteorological data, land cover and building geometry data. Using the City of Zurich as our case study, we: (i) validated the TARGET model against air temperature measurements from private sensor networks, (ii) performed a sensitivity analysis to identify key variables affecting urban heat, and (iii) investigated urban heat relationships with blue-green cover at locations frequented by pedestrians. Presence of urban green and blue spaces across the region shows potential for reducing local air temperatures by up to 5.2 °C (with urban forest). Investigating this relationship at different locations in the city revealed key districts that should potentially be targeted for reduction of pedestrian heat-impacts, due to their high pedestrian traffic, fewer green and blue spaces and high daytime air temperatures. Our results not only provide insights into the cooling effect of different amounts of green and blue features in the urban environment, but also demonstrates the application and integration potential of simplified models like TARGET to support the planning of more liveable future cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MHCL完成签到 ,获得积分10
1秒前
哈基米德应助一颗小番茄采纳,获得30
1秒前
矮小的天菱完成签到,获得积分10
2秒前
长安发布了新的文献求助10
2秒前
5秒前
ddddddd完成签到,获得积分20
6秒前
章半仙完成签到,获得积分10
7秒前
8秒前
10秒前
amberzyc应助小远采纳,获得10
11秒前
qiongqiong完成签到,获得积分10
12秒前
淡定的依瑶完成签到,获得积分10
13秒前
江璃发布了新的文献求助10
15秒前
16秒前
17秒前
美丽的安珊完成签到,获得积分10
18秒前
18秒前
20秒前
Gilana完成签到,获得积分10
20秒前
xyh发布了新的文献求助10
20秒前
江璃完成签到,获得积分10
21秒前
TT发布了新的文献求助10
21秒前
美梦成真完成签到,获得积分10
22秒前
Gakay完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
szj完成签到,获得积分0
24秒前
旦皋完成签到,获得积分10
24秒前
赘婿应助花壳在逃野猪采纳,获得10
25秒前
卷卷完成签到,获得积分10
27秒前
JSY完成签到 ,获得积分20
27秒前
xyh完成签到,获得积分10
28秒前
小曾应助Florencia采纳,获得10
29秒前
神外王001完成签到 ,获得积分10
29秒前
34秒前
你是谁完成签到,获得积分10
35秒前
majf完成签到,获得积分10
36秒前
linhanwenzhou完成签到,获得积分10
36秒前
JSY关注了科研通微信公众号
36秒前
853225598完成签到,获得积分10
36秒前
798完成签到,获得积分10
37秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029