Investigating the efficacy of a fast urban climate model for spatial planning of green and blue spaces for heat mitigation

城市热岛 绿色基础设施 环境科学 城市规划 空间规划 气候变化 环境规划 城市气候 环境资源管理 气象学 地理 土木工程 地质学 工程类 海洋学
作者
Jiayu Chen,Peter M. Bach,Kerry A. Nice,João P. Leitão
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:: 176925-176925
标识
DOI:10.1016/j.scitotenv.2024.176925
摘要

Problems caused by urban heat have prompted the exploration of urban greenery and blue spaces for heat mitigation. Various numerical models can simulate heat-related processes, but their use as support-tools to urban planners remains underexplored, particularly at the city-scale, due to high computational demand and complexity of such models. This study investigates the spatial relationships between urban heat, urban form and urban green and blue spaces with the fast climate model TARGET (The Air-temperature Response to Green/blue-infrastructure Evaluation Tool), which only requires minimal inputs of standard meteorological data, land cover and building geometry data. Using the City of Zurich as our case study, we: (i) validated the TARGET model against air temperature measurements from private sensor networks, (ii) performed a sensitivity analysis to identify key variables affecting urban heat, and (iii) investigated urban heat relationships with blue-green cover at locations frequented by pedestrians. Presence of urban green and blue spaces across the region shows potential for reducing local air temperatures by up to 5.2 °C (with urban forest). Investigating this relationship at different locations in the city revealed key districts that should potentially be targeted for reduction of pedestrian heat-impacts, due to their high pedestrian traffic, fewer green and blue spaces and high daytime air temperatures. Our results not only provide insights into the cooling effect of different amounts of green and blue features in the urban environment, but also demonstrates the application and integration potential of simplified models like TARGET to support the planning of more liveable future cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zon完成签到,获得积分10
1秒前
JamesPei应助wjx采纳,获得10
1秒前
风趣安青发布了新的文献求助10
2秒前
2秒前
无花果应助陌路孤星采纳,获得10
2秒前
齐俞如完成签到,获得积分10
3秒前
jennie发布了新的文献求助30
3秒前
sdl发布了新的文献求助10
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
4秒前
清爽乐菱应助科研通管家采纳,获得30
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得30
4秒前
Zon发布了新的文献求助10
4秒前
鸣笛应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
5秒前
5秒前
在水一方应助小白痴采纳,获得10
6秒前
hideyoshi发布了新的文献求助30
6秒前
LL关闭了LL文献求助
6秒前
CipherSage应助要减肥的香芦采纳,获得10
6秒前
王q完成签到,获得积分10
8秒前
欢喜念双发布了新的文献求助10
9秒前
9秒前
魏开铭发布了新的文献求助10
9秒前
Ava应助杨诗梦采纳,获得10
10秒前
10秒前
10秒前
nijin发布了新的文献求助10
10秒前
隐形曼青应助风清扬采纳,获得10
11秒前
11秒前
虚空的容器完成签到,获得积分10
12秒前
ZhangLU发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974882
求助须知:如何正确求助?哪些是违规求助? 3519431
关于积分的说明 11198315
捐赠科研通 3255698
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877237
科研通“疑难数据库(出版商)”最低求助积分说明 806219