Flavoring search algorithm with applications to engineering optimization problems and robot path planning

水准点(测量) 路径(计算) 计算机科学 数学优化 启发式 搜索算法 算法 人工智能 数学 程序设计语言 大地测量学 地理
作者
Jin Huang Wu,Zhengdong Su
出处
期刊:Applied Mathematical Modelling [Elsevier]
卷期号:135: 396-437
标识
DOI:10.1016/j.apm.2024.07.002
摘要

In this paper, a human-based meta-heuristic algorithm, the Flavoring Search Algorithm, is proposed and mathematically modeled with the aim of providing an alternative optimization method for solving practical engineering problems. Flavoring Search Algorithm is inspired by the human behavior of flavoring in everyday life, including basic flavoring, formal flavoring, and auxiliary flavoring. By introducing a unique taste factor, it not only succeeded in making the FSA correspond to the real flavoring process but also balanced the exploration and exploitation of the algorithm. With the help of the taste factors, Flavoring Search Algorithm performs basic flavoring (initial flavoring and random flavoring) in the exploration phase and formal flavoring and auxiliary flavoring in the exploitation phase. In addition, theoretical analysis and experiments have led to the conclusion that the taste factor can be used as an effective and practical new threshold conversion mechanism for meta-heuristic algorithms. This study also establishes a Markov model to rigorously analyze the Flavoring Search Algorithm as a globally convergent algorithm from a mathematical point of view. Through experimental and analytical comparisons with other excellent optimizers on 30 test functions, as well as on 3 real-world engineering design problems and 1 path planning problem. The results show that the Flavoring Search Algorithm generally outperforms the tested competitors in solving benchmark functions and engineering problems, validating the utility of the proposed optimizer in solving challenging real-world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到 ,获得积分10
1秒前
丸子放盆里完成签到,获得积分10
1秒前
疯狂的青亦完成签到,获得积分10
1秒前
zzz完成签到,获得积分10
3秒前
zink发布了新的文献求助10
3秒前
小杰完成签到 ,获得积分10
3秒前
qaq发布了新的文献求助10
3秒前
子时月发布了新的文献求助10
4秒前
5秒前
是冬天完成签到 ,获得积分10
5秒前
Lxxx_7完成签到 ,获得积分10
5秒前
12完成签到 ,获得积分10
6秒前
sai发布了新的文献求助10
6秒前
CodeCraft应助wzxxxx采纳,获得10
7秒前
Andy完成签到 ,获得积分10
7秒前
小可完成签到 ,获得积分10
8秒前
斯文败类应助shanjianjie采纳,获得20
8秒前
笋蒸鱼发布了新的文献求助10
8秒前
1321完成签到,获得积分10
8秒前
huahua完成签到,获得积分10
8秒前
66应助马佳凯采纳,获得10
11秒前
林溪完成签到,获得积分10
11秒前
Amber应助CTX采纳,获得10
11秒前
lan完成签到 ,获得积分10
11秒前
共享精神应助Elaine采纳,获得10
13秒前
13秒前
安静一曲完成签到 ,获得积分10
13秒前
14秒前
完美世界应助嘎嘎顺利采纳,获得10
14秒前
崔靥完成签到,获得积分10
14秒前
15秒前
阿敏关注了科研通微信公众号
15秒前
一只绒可可完成签到,获得积分10
15秒前
CBY完成签到,获得积分10
15秒前
15秒前
QYPANG完成签到,获得积分10
16秒前
子时月完成签到,获得积分10
17秒前
脑洞疼应助xlx采纳,获得10
17秒前
jym完成签到,获得积分10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740