Flavoring search algorithm with applications to engineering optimization problems and robot path planning

水准点(测量) 路径(计算) 计算机科学 数学优化 启发式 搜索算法 算法 人工智能 数学 程序设计语言 大地测量学 地理
作者
Jin Huang Wu,Zhengdong Su
出处
期刊:Applied Mathematical Modelling [Elsevier]
卷期号:135: 396-437
标识
DOI:10.1016/j.apm.2024.07.002
摘要

In this paper, a human-based meta-heuristic algorithm, the Flavoring Search Algorithm, is proposed and mathematically modeled with the aim of providing an alternative optimization method for solving practical engineering problems. Flavoring Search Algorithm is inspired by the human behavior of flavoring in everyday life, including basic flavoring, formal flavoring, and auxiliary flavoring. By introducing a unique taste factor, it not only succeeded in making the FSA correspond to the real flavoring process but also balanced the exploration and exploitation of the algorithm. With the help of the taste factors, Flavoring Search Algorithm performs basic flavoring (initial flavoring and random flavoring) in the exploration phase and formal flavoring and auxiliary flavoring in the exploitation phase. In addition, theoretical analysis and experiments have led to the conclusion that the taste factor can be used as an effective and practical new threshold conversion mechanism for meta-heuristic algorithms. This study also establishes a Markov model to rigorously analyze the Flavoring Search Algorithm as a globally convergent algorithm from a mathematical point of view. Through experimental and analytical comparisons with other excellent optimizers on 30 test functions, as well as on 3 real-world engineering design problems and 1 path planning problem. The results show that the Flavoring Search Algorithm generally outperforms the tested competitors in solving benchmark functions and engineering problems, validating the utility of the proposed optimizer in solving challenging real-world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Julia发布了新的文献求助10
1秒前
柔弱山芙发布了新的文献求助10
1秒前
D33sama应助小w采纳,获得30
1秒前
1秒前
3秒前
5秒前
研友_nV2pkn发布了新的文献求助10
6秒前
虫不知发布了新的文献求助10
6秒前
wjj发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
南宫誉发布了新的文献求助10
9秒前
seashell发布了新的文献求助10
10秒前
Lucas应助林悦涵采纳,获得10
10秒前
Opse发布了新的文献求助10
11秒前
西西发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
16秒前
18秒前
seashell完成签到,获得积分10
18秒前
可可大人完成签到 ,获得积分10
18秒前
zhhhhh发布了新的文献求助10
19秒前
20秒前
yyssyy发布了新的文献求助10
20秒前
小菜一碟啦完成签到,获得积分10
21秒前
可可大人关注了科研通微信公众号
21秒前
天天快乐应助ksak607155采纳,获得10
21秒前
22秒前
无花果应助myself采纳,获得10
22秒前
慕青应助wendy采纳,获得10
22秒前
22秒前
陈军应助慕梦安采纳,获得20
22秒前
丘比特应助sunshine采纳,获得10
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157277
求助须知:如何正确求助?哪些是违规求助? 2808570
关于积分的说明 7877973
捐赠科研通 2467049
什么是DOI,文献DOI怎么找? 1313150
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919