Vehicle trajectory prediction method integrating spatiotemporal relationships with hybrid time-step scene interaction

弹道 计算机科学 计算机视觉 人工智能 物理 天文
作者
Yong Guan,LI Nin,Pengzhan Chen,Yongchao Zhang
标识
DOI:10.1177/09544070241277412
摘要

In vehicle trajectory prediction, constructing the interactive relationships among vehicles within the traffic environment poses a significant challenge. Existing models predominantly focus on temporal dependencies within vehicle histories and spatial correlations among neighboring vehicles, overlooking the continuous influence of historical vehicle states on the current time step and the interplay of multiple sequences over time. To address these limitations, we propose a method for multimodal vehicle trajectory prediction that integrates Hybrid Time-step Scene Interaction (HTSI) into the spatiotemporal relationships. Firstly, we introduce the HTSI module, comprising Multi-step Temporal Information Aggregation (MTIA) and Single-step Temporal Information Aggregation (STIA) methods. MTIA utilizes multi-head attention mechanisms to capture temporal dependencies between consecutive frames, thereby generating new time series amalgamating the ongoing influence of historical time states on the current timestamp. Simultaneously, STIA employs multi-head attention mechanisms to capture the spatial dimension weights of multiple time series and, by aggregating spatial interaction features at each timestamp, generates new time series fused with spatial interaction influences. Subsequently, feature extraction is performed through LSTM layers. Moreover, we propose an improved DIPM pooling module, improving the model’s long-term prediction capability by selectively reusing historical hidden states. Ultimately, based on training results from the HighD and NGSIM datasets, our model demonstrates significant advantages in long-term prediction compared to other state-of-the-art trajectory prediction models. Specifically, within the 5 s prediction window, the model achieved a root mean square error (RMSE) of 2.79 m on the NGSIM dataset, representing a 33.62% improvement over the baseline model’s average accuracy. Additionally, on the HighD dataset, the model attained an RMSE of 2.16 m, reflecting a 33.43% enhancement. The crucial code can be obtained from the provided link: https://github.com/gyhhq/Prediction-trajectory .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云云云完成签到,获得积分10
刚刚
科研通AI2S应助刻苦的乐巧采纳,获得10
刚刚
solar发布了新的文献求助30
刚刚
刚刚
gxh66完成签到,获得积分10
刚刚
哈哈哈发布了新的文献求助10
1秒前
1秒前
研友_VZG7GZ应助霜白头采纳,获得10
1秒前
1秒前
bkagyin应助复杂的如彤采纳,获得10
2秒前
搜集达人应助colorful采纳,获得30
2秒前
彭于晏应助飞在夏夜的猫采纳,获得30
2秒前
2秒前
小菜鸟001应助喝醉酒的猫采纳,获得10
2秒前
MchemG应助小灰灰采纳,获得150
4秒前
阳昭广发布了新的文献求助10
4秒前
xiaozhang发布了新的文献求助10
5秒前
Ava应助我很好你呢采纳,获得10
6秒前
wxq发布了新的文献求助10
6秒前
吃货发布了新的文献求助10
6秒前
HGFJGK发布了新的文献求助10
6秒前
6秒前
酷波er应助斯人采纳,获得30
7秒前
7秒前
笑点解析应助solar采纳,获得10
7秒前
剑指天涯完成签到,获得积分10
8秒前
打小就帅完成签到,获得积分10
8秒前
小菜鸟001应助meng采纳,获得10
8秒前
8秒前
9秒前
Kenny发布了新的文献求助10
12秒前
yang发布了新的文献求助10
12秒前
12秒前
lt_zyk完成签到,获得积分10
12秒前
嗯哼应助熬夜猫采纳,获得50
13秒前
13秒前
暄暄发布了新的文献求助10
13秒前
13秒前
Eunice完成签到,获得积分20
13秒前
123456发布了新的文献求助10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469240
求助须知:如何正确求助?哪些是违规求助? 3062268
关于积分的说明 9078513
捐赠科研通 2752652
什么是DOI,文献DOI怎么找? 1510516
科研通“疑难数据库(出版商)”最低求助积分说明 697909
邀请新用户注册赠送积分活动 697783