Improved Dementia Prediction in Cerebral Small Vessel Disease Using Deep Learning–Derived Diffusion Scalar Maps From T1

医学 部分各向异性 白质 痴呆 高强度 神经影像学 疾病 基本事实 磁共振弥散成像 内科学 人工智能 核医学 核磁共振 放射科 磁共振成像 物理 精神科 计算机科学
作者
Yutong Chen,Daniel J. Tozer,Rui Li,Hao Li,Anil M. Tuladhar,Frank‐Erik de Leeuw,Hugh S. Markus
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1161/strokeaha.124.047449
摘要

BACKGROUND: Cerebral small vessel disease is the most common pathology underlying vascular dementia. In small vessel disease, diffusion tensor imaging is more sensitive to white matter damage and better predicts dementia risk than conventional magnetic resonance imaging sequences, such as T1 and fluid attenuation inversion recovery, but diffusion tensor imaging takes longer to acquire and is not routinely available in clinical practice. As diffusion tensor imaging–derived scalar maps—fractional anisotropy (FA) and mean diffusivity (MD)—are frequently used in clinical settings, one solution is to synthesize FA/MD from T1 images. METHODS: We developed a deep learning model to synthesize FA/MD from T1. The training data set consisted of 4998 participants with the highest white matter hyperintensity volumes in the UK Biobank. Four external validations data sets with small vessel disease were included: SCANS (St George’s Cognition and Neuroimaging in Stroke; n=120), RUN DMC (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Imaging Cohort; n=502), PRESERVE (Blood Pressure in Established Cerebral Small Vessel Disease; n=105), and NETWORKS (n=26), along with 1000 normal controls from the UK Biobank. RESULTS: The synthetic maps resembled ground-truth maps (structural similarity index >0.89 for MD maps and >0.80 for FA maps across all external validation data sets except for SCANS). The prediction accuracy of dementia using whole-brain median MD from the synthetic maps is comparable to the ground truth (SCANS ground-truth c-index, 0.822 and synthetic, 0.821; RUN DMC ground truth, 0.816 and synthetic, 0.812) and better than white matter hyperintensity volume (SCANS, 0.534; RUN DMC, 0.710). CONCLUSIONS: We have developed a fast and generalizable method to synthesize FA/MD maps from T1 to improve the prediction accuracy of dementia in small vessel disease when diffusion tensor imaging data have not been acquired.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上冥茗完成签到 ,获得积分10
刚刚
科研小菜狗完成签到,获得积分10
2秒前
2秒前
2秒前
大模型应助张巨锋采纳,获得10
3秒前
阿柱哥发布了新的文献求助10
4秒前
4秒前
谷安发布了新的文献求助10
4秒前
betyby完成签到 ,获得积分10
4秒前
善学以致用应助合适依秋采纳,获得10
6秒前
Gloven完成签到,获得积分10
6秒前
8秒前
通天塔发布了新的文献求助10
9秒前
高兴凌波完成签到,获得积分20
10秒前
zz发布了新的文献求助10
10秒前
10秒前
11秒前
kinmon完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
VV2001发布了新的文献求助10
14秒前
14秒前
852应助一个普通的学渣采纳,获得10
15秒前
无花果应助xinxin采纳,获得50
15秒前
15秒前
投机倒把发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
77发布了新的文献求助10
17秒前
合适依秋发布了新的文献求助10
17秒前
谷安完成签到,获得积分10
18秒前
西海岸的风完成签到 ,获得积分10
18秒前
xiexiaopa发布了新的文献求助10
19秒前
20秒前
AKACrown发布了新的文献求助20
20秒前
完美的冰绿完成签到,获得积分10
21秒前
22秒前
song完成签到 ,获得积分10
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141028
求助须知:如何正确求助?哪些是违规求助? 2791955
关于积分的说明 7801220
捐赠科研通 2448217
什么是DOI,文献DOI怎么找? 1302479
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226