Determination of soluble solids content in tomatoes with different nitrogen levels based on hyperspectral imaging technique

高光谱成像 卷积神经网络 生物系统 氮气 残余物 人工智能 计算机科学 数学 模式识别(心理学) 化学 算法 生物 有机化学
作者
Yiyang Zhang,Yao Zhang,Yu Tian,Ma Hua,Xingwu Tian,Yanzhe Zhu,Yong Huang,Yune Cao,Longguo Wu
出处
期刊:Journal of Food Science [Wiley]
标识
DOI:10.1111/1750-3841.17264
摘要

Abstract Tomato is sweet and sour with high nutritional value, and soluble solids content (SSC) is an important indicator of tomato flavor. Due to the different mechanisms of nitrogen uptake and assimilation in plants, exogenous supply of different forms of nitrogen will have different effects on the growth, development, and physiological metabolic processes of tomato, thus affecting the tomato flavor. In this paper, hyperspectral imaging (HSI) technique combined with neural network prediction model was used to predict SSC of tomato under different nitrogen treatments. Competitive adaptive reweighed sampling (CARS) and iterative retained information variable (IRIV) were used to extract the feature wavelengths. Based on the characteristic wavelength, the prediction models of tomato SSC are established by custom convolutional neural network (CNN) model that was constructed and optimized. The results showed that the SSC of tomato was negatively correlated with nitrogen fertilizer concentration. For tomatoes treated with different nitrogen concentrations, the residual predictive deviation (RPD) of CARS‐CNN and IRIV‐parallel convolutional neural networks (PCNN) reached 1.64 and 1.66, both more than 1.6, indicating good model prediction. This study provides technical support for future online nondestructive testing of tomato quality. Practical Application The CARS‐CNN and IRIV‐PCNN were the best data processing model. Four customized convolutional neural networks were used for predictive modeling. The CNN model provides more accurate results than conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叽里咕噜完成签到 ,获得积分10
1秒前
田様应助zccc采纳,获得10
2秒前
隐形的雁完成签到,获得积分10
2秒前
追寻的秋玲完成签到,获得积分10
3秒前
李繁蕊发布了新的文献求助10
3秒前
4秒前
舒心的紫雪完成签到 ,获得积分10
5秒前
5秒前
7秒前
7秒前
8秒前
不上课不行完成签到,获得积分10
9秒前
再干一杯完成签到,获得积分10
9秒前
10秒前
汉堡包应助rudjs采纳,获得10
11秒前
11秒前
zsyzxb发布了新的文献求助10
12秒前
东东发布了新的文献求助10
12秒前
zena92发布了新的文献求助10
13秒前
锤子米完成签到,获得积分10
13秒前
13秒前
赤练仙子完成签到,获得积分10
15秒前
MnO2fff应助zsyzxb采纳,获得20
18秒前
kingwill应助zsyzxb采纳,获得20
18秒前
顺利鱼完成签到,获得积分10
19秒前
21秒前
22秒前
Xx.完成签到,获得积分10
23秒前
星辰大海应助内向凌兰采纳,获得10
23秒前
23秒前
wuzhizhiya完成签到,获得积分10
24秒前
25秒前
rudjs发布了新的文献求助10
25秒前
28秒前
Ava应助何糖采纳,获得10
28秒前
桐桐应助美丽的芷烟采纳,获得10
28秒前
野子完成签到,获得积分10
29秒前
情怀应助小D采纳,获得30
30秒前
yuan发布了新的文献求助10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808