Determination of soluble solids content in tomatoes with different nitrogen levels based on hyperspectral imaging technique

高光谱成像 卷积神经网络 生物系统 氮气 残余物 人工智能 计算机科学 数学 模式识别(心理学) 化学 算法 生物 有机化学
作者
Yiyang Zhang,Yao Zhang,Yu Tian,Ma Hua,Xingwu Tian,Yanzhe Zhu,Yong Huang,Yune Cao,Longguo Wu
出处
期刊:Journal of Food Science [Wiley]
标识
DOI:10.1111/1750-3841.17264
摘要

Abstract Tomato is sweet and sour with high nutritional value, and soluble solids content (SSC) is an important indicator of tomato flavor. Due to the different mechanisms of nitrogen uptake and assimilation in plants, exogenous supply of different forms of nitrogen will have different effects on the growth, development, and physiological metabolic processes of tomato, thus affecting the tomato flavor. In this paper, hyperspectral imaging (HSI) technique combined with neural network prediction model was used to predict SSC of tomato under different nitrogen treatments. Competitive adaptive reweighed sampling (CARS) and iterative retained information variable (IRIV) were used to extract the feature wavelengths. Based on the characteristic wavelength, the prediction models of tomato SSC are established by custom convolutional neural network (CNN) model that was constructed and optimized. The results showed that the SSC of tomato was negatively correlated with nitrogen fertilizer concentration. For tomatoes treated with different nitrogen concentrations, the residual predictive deviation (RPD) of CARS‐CNN and IRIV‐parallel convolutional neural networks (PCNN) reached 1.64 and 1.66, both more than 1.6, indicating good model prediction. This study provides technical support for future online nondestructive testing of tomato quality. Practical Application The CARS‐CNN and IRIV‐PCNN were the best data processing model. Four customized convolutional neural networks were used for predictive modeling. The CNN model provides more accurate results than conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
orixero应助高高采纳,获得10
1秒前
1秒前
1秒前
李思齐发布了新的文献求助10
1秒前
李明发布了新的文献求助10
1秒前
一个小短发应助文件撤销了驳回
2秒前
2秒前
2秒前
深情安青应助xiaoliu采纳,获得10
2秒前
喜悦剑身发布了新的文献求助30
2秒前
3秒前
3秒前
3秒前
3秒前
wanci应助野性的易梦采纳,获得20
3秒前
健身boy完成签到,获得积分10
4秒前
chen完成签到,获得积分10
4秒前
孤独的惜梦完成签到,获得积分10
5秒前
善学以致用应助Twilight采纳,获得10
5秒前
顾矜应助LiuHK采纳,获得10
5秒前
5秒前
科研通AI2S应助崩溃采纳,获得10
5秒前
6秒前
微笑发布了新的文献求助10
6秒前
科研小白发布了新的文献求助10
6秒前
fagfagsf发布了新的文献求助10
6秒前
你好纠结伦完成签到,获得积分10
7秒前
支问凝完成签到,获得积分10
7秒前
zy完成签到,获得积分10
7秒前
8秒前
K1481691发布了新的文献求助10
8秒前
8秒前
yyq完成签到,获得积分10
8秒前
太阳完成签到,获得积分10
8秒前
淡然梦凡完成签到,获得积分10
9秒前
ip07in13完成签到,获得积分10
9秒前
SHD发布了新的文献求助10
9秒前
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147464
求助须知:如何正确求助?哪些是违规求助? 2798635
关于积分的说明 7830317
捐赠科研通 2455424
什么是DOI,文献DOI怎么找? 1306789
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587