Determination of soluble solids content in tomatoes with different nitrogen levels based on hyperspectral imaging technique

高光谱成像 卷积神经网络 生物系统 氮气 残余物 人工智能 计算机科学 数学 模式识别(心理学) 化学 算法 生物 有机化学
作者
Yiyang Zhang,Yao Zhang,Yu Tian,Ma Hua,Xingwu Tian,Yanzhe Zhu,Yong Huang,Yune Cao,Longguo Wu
出处
期刊:Journal of Food Science [Wiley]
标识
DOI:10.1111/1750-3841.17264
摘要

Abstract Tomato is sweet and sour with high nutritional value, and soluble solids content (SSC) is an important indicator of tomato flavor. Due to the different mechanisms of nitrogen uptake and assimilation in plants, exogenous supply of different forms of nitrogen will have different effects on the growth, development, and physiological metabolic processes of tomato, thus affecting the tomato flavor. In this paper, hyperspectral imaging (HSI) technique combined with neural network prediction model was used to predict SSC of tomato under different nitrogen treatments. Competitive adaptive reweighed sampling (CARS) and iterative retained information variable (IRIV) were used to extract the feature wavelengths. Based on the characteristic wavelength, the prediction models of tomato SSC are established by custom convolutional neural network (CNN) model that was constructed and optimized. The results showed that the SSC of tomato was negatively correlated with nitrogen fertilizer concentration. For tomatoes treated with different nitrogen concentrations, the residual predictive deviation (RPD) of CARS‐CNN and IRIV‐parallel convolutional neural networks (PCNN) reached 1.64 and 1.66, both more than 1.6, indicating good model prediction. This study provides technical support for future online nondestructive testing of tomato quality. Practical Application The CARS‐CNN and IRIV‐PCNN were the best data processing model. Four customized convolutional neural networks were used for predictive modeling. The CNN model provides more accurate results than conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白茶完成签到,获得积分10
刚刚
1秒前
Zzy完成签到,获得积分10
1秒前
1秒前
顾矜应助周小鱼采纳,获得10
1秒前
SYLH应助勤劳的斑马采纳,获得30
1秒前
Y哦莫哦莫完成签到,获得积分10
1秒前
1秒前
林狗完成签到 ,获得积分10
2秒前
2秒前
清爽语柳完成签到,获得积分10
2秒前
3秒前
qqq发布了新的文献求助10
3秒前
3秒前
咖啡豆完成签到,获得积分10
4秒前
lll完成签到,获得积分10
4秒前
科目三应助Lizzy采纳,获得10
5秒前
6秒前
livian完成签到,获得积分20
6秒前
时尚的萝完成签到 ,获得积分10
6秒前
zhou发布了新的文献求助10
6秒前
凯云发布了新的文献求助30
7秒前
Cain完成签到,获得积分10
7秒前
善学以致用应助Tomin采纳,获得10
7秒前
subat完成签到,获得积分10
7秒前
xiaoman完成签到,获得积分10
8秒前
8秒前
eff发布了新的文献求助10
8秒前
9秒前
9秒前
王芳发布了新的文献求助30
10秒前
wind2631完成签到,获得积分10
10秒前
SciGPT应助显隐采纳,获得10
10秒前
科研通AI2S应助xuexuexixi123采纳,获得10
11秒前
周小鱼发布了新的文献求助10
11秒前
11秒前
ijn发布了新的文献求助10
11秒前
淡定的灵雁完成签到,获得积分10
11秒前
Macy-Zhao完成签到,获得积分10
11秒前
Jasper应助清爽的尔白采纳,获得10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406