Adaptive node feature extraction in graph-based neural networks for brain diseases diagnosis using self-supervised learning

计算机科学 脑电图 人工智能 模式识别(心理学) 特征提取 图形 节点(物理) 特征学习 人工神经网络 机器学习 心理学 神经科学 结构工程 理论计算机科学 工程类
作者
Youbing Zeng,Jiaying Lin,Zhuoshuo Li,Zehui Xiao,Chen Wang,Xinting Ge,Cheng Wang,Gui Chao Huang,Mengting Liu
出处
期刊:NeuroImage [Elsevier BV]
卷期号:297: 120750-120750 被引量:2
标识
DOI:10.1016/j.neuroimage.2024.120750
摘要

Electroencephalography (EEG) has demonstrated significant value in diagnosing brain diseases. In particular, brain networks have gained prominence as they offer additional valuable insights by establishing connections between EEG signal channels. While brain connections are typically delineated by channel signal similarity, there lacks a consistent and reliable strategy for ascertaining node characteristics. Conventional node features such as temporal and frequency domain properties of EEG signals prove inadequate for capturing the extensive EEG information. In our investigation, we introduce a novel adaptive method for extracting node features from EEG signals utilizing a distinctive task-induced self-supervised learning technique. By amalgamating these extracted node features with fundamental edge features constructed using Pearson correlation coefficients, we showed that the proposed approach can function as a plug-in module that can be integrated to many common GNN networks (e.g., GCN, GraphSAGE, GAT) as a replacement of node feature selections module. Comprehensive experiments are then conducted to demonstrate the consistently superior performance and high generality of the proposed method over other feature selection methods in various of brain disorder prediction tasks, such as depression, schizophrenia, and Parkinson's disease. Furthermore, compared to other node features, our approach unveils profound spatial patterns through graph pooling and structural learning, shedding light on pivotal brain regions influencing various brain disorder prediction based on derived features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Joy采纳,获得10
1秒前
2秒前
2秒前
3秒前
李付敏发布了新的文献求助10
4秒前
旅行的兵马俑完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
jjj发布了新的文献求助10
7秒前
8秒前
zjy发布了新的文献求助10
8秒前
元气饱满发布了新的文献求助10
8秒前
ltt完成签到,获得积分10
9秒前
10秒前
10秒前
动听平露发布了新的文献求助10
12秒前
英姑应助杨天水采纳,获得10
12秒前
百招发布了新的文献求助10
12秒前
Victor完成签到,获得积分10
12秒前
13秒前
13秒前
巴啦啦能量完成签到,获得积分10
13秒前
科研通AI5应助李付敏采纳,获得10
13秒前
bckl888发布了新的文献求助10
14秒前
星辰大海应助Bressanone采纳,获得10
15秒前
丘比特应助Azazel采纳,获得10
17秒前
喜悦小猫咪完成签到,获得积分10
17秒前
善良黑夜发布了新的文献求助10
18秒前
稳重书本完成签到,获得积分20
18秒前
领导范儿应助华东偏振王采纳,获得10
19秒前
nancy wang发布了新的文献求助10
20秒前
21秒前
小小发布了新的文献求助10
21秒前
CipherSage应助青山采纳,获得10
21秒前
kk完成签到,获得积分10
21秒前
22秒前
22秒前
科研通AI2S应助2311采纳,获得30
24秒前
pluto应助感动书竹采纳,获得20
27秒前
高分求助中
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775349
求助须知:如何正确求助?哪些是违规求助? 3321018
关于积分的说明 10203117
捐赠科研通 3035869
什么是DOI,文献DOI怎么找? 1665800
邀请新用户注册赠送积分活动 797104
科研通“疑难数据库(出版商)”最低求助积分说明 757740