Adaptive node feature extraction in graph-based neural networks for brain diseases diagnosis using self-supervised learning

计算机科学 脑电图 人工智能 模式识别(心理学) 特征提取 图形 节点(物理) 特征学习 人工神经网络 机器学习 心理学 神经科学 结构工程 理论计算机科学 工程类
作者
Youbing Zeng,Jiaying Lin,Zhuoshuo Li,Zehui Xiao,Chen Wang,Xinting Ge,Cheng Wang,Gui Chao Huang,Mengting Liu
出处
期刊:NeuroImage [Elsevier]
卷期号:297: 120750-120750 被引量:2
标识
DOI:10.1016/j.neuroimage.2024.120750
摘要

Electroencephalography (EEG) has demonstrated significant value in diagnosing brain diseases. In particular, brain networks have gained prominence as they offer additional valuable insights by establishing connections between EEG signal channels. While brain connections are typically delineated by channel signal similarity, there lacks a consistent and reliable strategy for ascertaining node characteristics. Conventional node features such as temporal and frequency domain properties of EEG signals prove inadequate for capturing the extensive EEG information. In our investigation, we introduce a novel adaptive method for extracting node features from EEG signals utilizing a distinctive task-induced self-supervised learning technique. By amalgamating these extracted node features with fundamental edge features constructed using Pearson correlation coefficients, we showed that the proposed approach can function as a plug-in module that can be integrated to many common GNN networks (e.g., GCN, GraphSAGE, GAT) as a replacement of node feature selections module. Comprehensive experiments are then conducted to demonstrate the consistently superior performance and high generality of the proposed method over other feature selection methods in various of brain disorder prediction tasks, such as depression, schizophrenia, and Parkinson's disease. Furthermore, compared to other node features, our approach unveils profound spatial patterns through graph pooling and structural learning, shedding light on pivotal brain regions influencing various brain disorder prediction based on derived features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高大的储完成签到,获得积分10
1秒前
layzlr发布了新的文献求助10
1秒前
传奇3应助Xue采纳,获得10
1秒前
包容蛋挞完成签到,获得积分10
1秒前
qweerrtt完成签到,获得积分10
3秒前
糖糖糖发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
狂野忆文完成签到,获得积分10
3秒前
3秒前
阿瓒完成签到,获得积分10
4秒前
4秒前
唐卟哩钵完成签到,获得积分10
4秒前
猪猪hero发布了新的文献求助10
4秒前
科研通AI6.1应助三横一竖采纳,获得10
4秒前
喀喀喀发布了新的文献求助20
5秒前
狂野忆文发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
zhou发布了新的文献求助10
7秒前
7秒前
丘比特应助科研通管家采纳,获得10
8秒前
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
杨杨应助科研通管家采纳,获得10
8秒前
包谷冬发布了新的文献求助10
8秒前
8秒前
杨杨应助科研通管家采纳,获得10
8秒前
8秒前
ZZG应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775976
求助须知:如何正确求助?哪些是违规求助? 5627280
关于积分的说明 15440657
捐赠科研通 4908271
什么是DOI,文献DOI怎么找? 2641135
邀请新用户注册赠送积分活动 1588932
关于科研通互助平台的介绍 1543784