Electrochemical Reaction Kinetics at Constant Interfacial Potential

电催化剂 电化学 催化作用 合理设计 反应速率常数 化学 电极电位 氨生产 动力学 化学动力学 热力学 化学物理 材料科学 纳米技术 物理化学 电极 物理 有机化学 量子力学
作者
Huan Li,Dong Luan,Jun Long,Pu Guo,Jianping Xiao
出处
期刊:ACS Catalysis 卷期号:14 (17): 12814-12823
标识
DOI:10.1021/acscatal.4c04034
摘要

Electrocatalysis has been recognized as one of the key technologies toward a carbon-neutral cycle of energy and substances. The rational design of electrocatalysts is undoubtedly the most important approach for accelerating the application of electrocatalysis. Computational screening of electrocatalysts based on thermodynamic evaluation is an efficient method for initially estimating their catalytic performances. However, the reaction rate at the electrochemical interface can be affected by many kinetic factors. Recently, we have developed a method for modeling potential/pH dependence in electrocatalysis, namely, electric field controlling constant potential (EFC-CP), which is much cheaper compared to the widely used grand canonical density functional theory calculations. This method can explicitly determine the evolution of real transition structures at varying potentials. As a result, both the chemical and electrostatic contributions to potential-dependent properties can be explicitly analyzed. Meanwhile, the change of the intermediate dipole along reaction coordinates can also be studied, which can reflect the pH dependence of the kinetic barrier. In this Perspective, we review the significant progress in understanding reaction kinetics in the application of electrochemical nitrogen fixation, ammonia synthesis, and denitrification. These insights can effectively help us understand the underlying physics of electrocatalytic reactions and improve the capability of catalyst design and modification. It is anticipated that the synergy between thermodynamic estimation and kinetic validation will enable the rational design of electrocatalysts in working condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
刚刚
Alberta完成签到,获得积分10
1秒前
1秒前
鳗鱼冰薇发布了新的文献求助30
1秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Yziii应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得30
2秒前
不配.应助科研通管家采纳,获得20
2秒前
wanci应助科研通管家采纳,获得10
2秒前
夏来应助科研通管家采纳,获得20
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
Singularity应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
xiaoming应助科研通管家采纳,获得60
3秒前
Owen应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得30
3秒前
YR发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
xu小白关注了科研通微信公众号
4秒前
孤独的寒天完成签到,获得积分10
4秒前
共享精神应助专注珠采纳,获得10
4秒前
宝贝充电站完成签到,获得积分10
5秒前
5秒前
岛屿完成签到,获得积分20
6秒前
安详寒蕾发布了新的文献求助10
6秒前
6秒前
温柔冥幽发布了新的文献求助10
6秒前
十九岁的时差完成签到,获得积分10
6秒前
7秒前
认真做科研完成签到,获得积分10
7秒前
7秒前
普通人发布了新的文献求助50
8秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135752
求助须知:如何正确求助?哪些是违规求助? 2786595
关于积分的说明 7778521
捐赠科研通 2442742
什么是DOI,文献DOI怎么找? 1298676
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866