Hydrogel biomaterials that stiffen and soften on demand reveal that skeletal muscle stem cells harbor a mechanical memory.

干细胞 骨骼肌 组织工程 心肌细胞 细胞生物学 解剖 生物医学工程 生物 医学
作者
Christopher M. Madl,Yu Xin Wang,Colin Holbrook,Shiqi Su,Xuechen Shi,Fitzroy J. Byfield,Gwendoline Wicki,Iris A. Flaig,Helen M. Blau
出处
期刊:PubMed 卷期号:121 (35): e2406787121-e2406787121
标识
DOI:10.1073/pnas.2406787121
摘要

Muscle stem cells (MuSCs) are specialized cells that reside in adult skeletal muscle poised to repair muscle tissue. The ability of MuSCs to regenerate damaged tissues declines markedly with aging and in diseases such as Duchenne muscular dystrophy, but the underlying causes of MuSC dysfunction remain poorly understood. Both aging and disease result in dramatic increases in the stiffness of the muscle tissue microenvironment from fibrosis. MuSCs are known to lose their regenerative potential if cultured on stiff plastic substrates. We sought to determine whether MuSCs harbor a memory of their past microenvironment and if it can be overcome. We tested MuSCs in situ using dynamic hydrogel biomaterials that soften or stiffen on demand in response to light and found that freshly isolated MuSCs develop a persistent memory of substrate stiffness characterized by loss of proliferative progenitors within the first three days of culture on stiff substrates. MuSCs cultured on soft hydrogels had altered cytoskeletal organization and activity of Rho and Rac guanosine triphosphate hydrolase (GTPase) and Yes-associated protein mechanotransduction pathways compared to those on stiff hydrogels. Pharmacologic inhibition identified RhoA activation as responsible for the mechanical memory phenotype, and single-cell RNA sequencing revealed a molecular signature of the mechanical memory. These studies highlight that microenvironmental stiffness regulates MuSC fate and leads to MuSC dysfunction that is not readily reversed by changing stiffness. Our results suggest that stiffness can be circumvented by targeting downstream signaling pathways to overcome stem cell dysfunction in aged and disease states with aberrant fibrotic tissue mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曼冬完成签到,获得积分10
1秒前
wangfu发布了新的文献求助10
2秒前
3秒前
幸好有你完成签到,获得积分10
5秒前
5秒前
聂非非发布了新的文献求助10
5秒前
5秒前
现代代桃完成签到 ,获得积分10
6秒前
风懒懒完成签到,获得积分10
6秒前
领导范儿应助111采纳,获得10
6秒前
古的古的应助Sean采纳,获得10
7秒前
小伙子很不错完成签到 ,获得积分10
7秒前
8秒前
图雄争霸完成签到 ,获得积分10
8秒前
雪碧呀完成签到,获得积分10
9秒前
10秒前
www完成签到 ,获得积分10
10秒前
10秒前
刻苦素发布了新的文献求助10
10秒前
12秒前
黑白灰发布了新的文献求助10
12秒前
兽行灵者发布了新的文献求助10
12秒前
爆米花应助Tacit采纳,获得10
13秒前
哔哔鱼完成签到,获得积分10
14秒前
14秒前
草上飞完成签到 ,获得积分10
14秒前
15秒前
博慧完成签到 ,获得积分10
16秒前
小桃发布了新的文献求助10
17秒前
欣慰听南完成签到,获得积分10
17秒前
懒猫发布了新的文献求助10
17秒前
勤能补拙完成签到,获得积分10
17秒前
李一锐关注了科研通微信公众号
18秒前
18秒前
tanchihao完成签到,获得积分10
18秒前
丰知然应助大海采纳,获得10
18秒前
GGBoy完成签到,获得积分10
19秒前
Lucky.完成签到 ,获得积分0
20秒前
所所应助兮兮采纳,获得10
23秒前
24秒前
高分求助中
Exploring Mitochondrial Autophagy Dysregulation in Osteosarcoma: Its Implications for Prognosis and Targeted Therapy 4000
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Migration and Wellbeing: Towards a More Inclusive World 1200
Research Methods for Sports Studies 1000
The genus Tolmerinus Bernhauer in Borneo (Coleoptera: Staphylinidae, Staphylininae) 530
Evolution 501
On the Refined Urban Stormwater Modeling 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2965736
求助须知:如何正确求助?哪些是违规求助? 2628876
关于积分的说明 7080919
捐赠科研通 2262719
什么是DOI,文献DOI怎么找? 1199963
版权声明 591345
科研通“疑难数据库(出版商)”最低求助积分说明 586885