已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing Quadrotor Control Robustness with Multi-Proportional–Integral–Derivative Self-Attention-Guided Deep Reinforcement Learning

强化学习 稳健性(进化) PID控制器 适应性 计算机科学 灵活性(工程) 随机性 人工智能 控制理论(社会学) 控制工程 工程类 控制(管理) 生物化学 化学 基因 温度控制 生态学 统计 数学 生物
作者
Yahui Ren,Feng Zhu,Shuaishuai Sui,Zhengming Yi,Chaoyu Chen
出处
期刊:Drones [MDPI AG]
卷期号:8 (7): 315-315 被引量:1
标识
DOI:10.3390/drones8070315
摘要

Deep reinforcement learning has demonstrated flexibility advantages in the control field of quadrotor aircraft. However, when there are sudden disturbances in the environment, especially special disturbances beyond experience, the algorithm often finds it difficult to maintain good control performance. Additionally, due to the randomness in the algorithm’s exploration of states, the model’s improvement efficiency during the training process is low and unstable. To address these issues, we propose a deep reinforcement learning framework guided by Multi-PID Self-Attention to tackle the challenges in the training speed and environmental adaptability of quadrotor aircraft control algorithms. In constructing the simulation experiment environment, we introduce multiple disturbance models to simulate complex situations in the real world. By combining the PID control strategy with deep reinforcement learning and utilizing the multi-head self-attention mechanism to optimize the state reward function in the simulation environment, this framework achieves an efficient and stable training process. This experiment aims to train a quadrotor simulation model to accurately fly to a predetermined position under various disturbance conditions and subsequently maintain a stable hovering state. The experimental results show that, compared with traditional deep reinforcement learning algorithms, this method achieves significant improvements in training efficiency and state exploration ability. At the same time, this study deeply analyzes the application effect of the algorithm in different complex environments, verifies its superior robustness and generalization ability in dealing with environmental disturbances, and provides a new solution for the intelligent control of quadrotor aircraft.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mia发布了新的文献求助10
2秒前
黙宇循光发布了新的文献求助10
2秒前
北海西贝完成签到,获得积分10
2秒前
AA发布了新的文献求助10
3秒前
4秒前
jj158完成签到,获得积分10
4秒前
香草完成签到 ,获得积分10
5秒前
gwrh发布了新的文献求助10
6秒前
慕青应助jj158采纳,获得50
7秒前
11秒前
11秒前
11秒前
微笑的涛应助Mia采纳,获得20
13秒前
13秒前
14秒前
Sam发布了新的文献求助10
16秒前
lily88发布了新的文献求助10
16秒前
科研通AI2S应助chslj采纳,获得10
18秒前
注册表z发布了新的文献求助10
24秒前
一屋鱼完成签到 ,获得积分10
25秒前
26秒前
NexusExplorer应助星辰大海采纳,获得10
26秒前
大龙哥886发布了新的文献求助10
31秒前
英姑应助Yuying采纳,获得10
32秒前
蓝天完成签到,获得积分10
32秒前
CynthiaaaCat发布了新的文献求助10
32秒前
34秒前
Wee完成签到 ,获得积分10
34秒前
总之完成签到 ,获得积分10
36秒前
37秒前
39秒前
大模型应助韩十四采纳,获得10
40秒前
42秒前
ww完成签到,获得积分10
43秒前
46秒前
47秒前
47秒前
星辰大海应助土豪的忆梅采纳,获得10
52秒前
53秒前
DopeRita发布了新的文献求助10
54秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801512
关于积分的说明 7845255
捐赠科研通 2459095
什么是DOI,文献DOI怎么找? 1308964
科研通“疑难数据库(出版商)”最低求助积分说明 628618
版权声明 601727