Enhancing Quadrotor Control Robustness with Multi-Proportional–Integral–Derivative Self-Attention-Guided Deep Reinforcement Learning

强化学习 稳健性(进化) PID控制器 适应性 计算机科学 灵活性(工程) 随机性 人工智能 控制理论(社会学) 控制工程 工程类 控制(管理) 生物化学 化学 基因 温度控制 生态学 统计 数学 生物
作者
Yahui Ren,Feng Zhu,Shuaishuai Sui,Zhengming Yi,Chaoyu Chen
出处
期刊:Drones [Multidisciplinary Digital Publishing Institute]
卷期号:8 (7): 315-315 被引量:1
标识
DOI:10.3390/drones8070315
摘要

Deep reinforcement learning has demonstrated flexibility advantages in the control field of quadrotor aircraft. However, when there are sudden disturbances in the environment, especially special disturbances beyond experience, the algorithm often finds it difficult to maintain good control performance. Additionally, due to the randomness in the algorithm’s exploration of states, the model’s improvement efficiency during the training process is low and unstable. To address these issues, we propose a deep reinforcement learning framework guided by Multi-PID Self-Attention to tackle the challenges in the training speed and environmental adaptability of quadrotor aircraft control algorithms. In constructing the simulation experiment environment, we introduce multiple disturbance models to simulate complex situations in the real world. By combining the PID control strategy with deep reinforcement learning and utilizing the multi-head self-attention mechanism to optimize the state reward function in the simulation environment, this framework achieves an efficient and stable training process. This experiment aims to train a quadrotor simulation model to accurately fly to a predetermined position under various disturbance conditions and subsequently maintain a stable hovering state. The experimental results show that, compared with traditional deep reinforcement learning algorithms, this method achieves significant improvements in training efficiency and state exploration ability. At the same time, this study deeply analyzes the application effect of the algorithm in different complex environments, verifies its superior robustness and generalization ability in dealing with environmental disturbances, and provides a new solution for the intelligent control of quadrotor aircraft.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
liam完成签到,获得积分10
1秒前
酷酷世德发布了新的文献求助10
1秒前
勤奋的雪冥完成签到,获得积分10
1秒前
张英俊发布了新的文献求助10
1秒前
领悟完成签到,获得积分10
1秒前
骆白容发布了新的文献求助10
1秒前
HHHAN完成签到,获得积分10
1秒前
1秒前
2秒前
yao发布了新的文献求助10
2秒前
天黑黑发布了新的文献求助10
2秒前
Rong发布了新的文献求助10
2秒前
qu蛐完成签到 ,获得积分10
3秒前
3秒前
小鬼完成签到,获得积分20
3秒前
gddaebh完成签到,获得积分10
3秒前
breaddog完成签到,获得积分10
3秒前
shuyi完成签到 ,获得积分10
4秒前
4秒前
中央戏精学院完成签到,获得积分10
4秒前
4秒前
叶。。。发布了新的文献求助10
5秒前
5秒前
共享精神应助lw采纳,获得10
6秒前
UPUP完成签到,获得积分10
6秒前
华仔应助学习中采纳,获得10
6秒前
大宝完成签到,获得积分10
7秒前
qwe完成签到,获得积分10
7秒前
zzzq完成签到,获得积分0
7秒前
abc完成签到,获得积分10
7秒前
清墨漓烟发布了新的文献求助10
8秒前
8秒前
冰红粥完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
白也也也完成签到,获得积分10
8秒前
jjjj721完成签到,获得积分10
9秒前
乔垣结衣应助佳佳采纳,获得10
9秒前
YEGE发布了新的文献求助10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953748
求助须知:如何正确求助?哪些是违规求助? 3499604
关于积分的说明 11096363
捐赠科研通 3230143
什么是DOI,文献DOI怎么找? 1785894
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801498