Fish Genomics and Its Application in Disease‐Resistance Breeding

标记辅助选择 背景(考古学) 植物抗病性 水产养殖 基因组学 生物 选择(遗传算法) 分子育种 渔业 生物技术 数量性状位点 基因组编辑 遗传学 计算生物学 基因组 计算机科学 基因 人工智能 古生物学
作者
Yu Huang,Zeyu Li,Mengcheng Li,Xinhui Zhang,Qiong Shi,Zhen Xu
出处
期刊:Reviews in Aquaculture [Wiley]
被引量:4
标识
DOI:10.1111/raq.12973
摘要

ABSTRACT Global aquaculture production has been rising for several decades, with up to 76% of the total production from fish. However, the problem of fish diseases is becoming more and more prominent in today's context of pursuing sustainable aquaculture. Since the first fish genome assembly reported in 2002, genomic approaches have been successfully implemented in fish breeding to enhance disease resistance and reduce economic losses caused by diverse fish diseases. Here, we present a review of the current progress in fish genomics and its application in disease‐resistance breeding. First, assembly data for all publicly available fish genomes were curated and statistical analysis of these data were performed. Subsequently, genomics‐assisted breeding approaches (including quantitative trait loci mapping, genome‐wide association study, marker‐assisted selection, genomic selection, gene transfer, and genome editing) that have been applied in practical disease–resistance breeding programs are outlined. In addition, candidate genetic markers that could possibly be utilized in breeding were summarized. Finally, remaining challenges and further directions were discussed. In summary, this review provides insight into fish genomics and genomics‐assisted breeding of disease‐resistant fish varieties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩soso完成签到,获得积分10
1秒前
桂桂发布了新的文献求助10
3秒前
FashionBoy应助Phi.Wang采纳,获得10
3秒前
3秒前
慕青应助lilac采纳,获得50
4秒前
4秒前
隐形曼青应助研友_LBKR9n采纳,获得10
5秒前
lilac发布了新的文献求助30
9秒前
英姑应助Hayat采纳,获得10
10秒前
冷傲未来发布了新的文献求助10
10秒前
李健的粉丝团团长应助Zzz采纳,获得10
11秒前
12秒前
12秒前
15秒前
15秒前
zzz完成签到,获得积分10
15秒前
isvv发布了新的文献求助10
16秒前
科研小趴菜完成签到 ,获得积分10
18秒前
18秒前
yy应助zhen采纳,获得10
19秒前
19秒前
Phi.Wang发布了新的文献求助10
20秒前
abtitw完成签到,获得积分10
20秒前
23秒前
yangyang发布了新的文献求助10
24秒前
isvv完成签到,获得积分10
25秒前
Zzz发布了新的文献求助10
26秒前
xiaoyang发布了新的文献求助10
29秒前
29秒前
29秒前
30秒前
在水一方应助九头鬼方采纳,获得30
30秒前
科研通AI2S应助小诗采纳,获得30
31秒前
33秒前
33秒前
Zzz完成签到,获得积分10
34秒前
35秒前
燕小丙完成签到,获得积分10
35秒前
orixero应助妃妃飞采纳,获得10
35秒前
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901