Propelling performance of silicon thin film lithium ion battery by appropriate dopants

材料科学 掺杂剂 阳极 锂(药物) 兴奋剂 介电谱 薄膜 电导率 电解质 化学工程 电化学 纳米技术 光电子学 电极 医学 化学 有机化学 物理化学 工程类 内分泌学
作者
Yin-Wei Cheng,Chun‐Hung Chen,Shih-An Wang,Yi‐Chang Li,Bo-Liang Peng,Jun‐Han Huang,Chuan‐Pu Liu
出处
期刊:Nano Energy [Elsevier]
卷期号:102: 107688-107688 被引量:15
标识
DOI:10.1016/j.nanoen.2022.107688
摘要

Although pristine silicon (Si) has been employed as a high-capacity anode material, high performance of Si-based lithium-ion battery (LIB) still remains challenging constrained mainly by low intrinsic electrical conductivity of the semiconductor. This drawback can be addressed by doping Si with group III and V elements; nevertheless, a systematic study on the doping species is rarely reported. Herein, the effects of dopants (boron and arsenic) in Si thin film anodes, prepared by electron beam evaporation from different target materials (including pristine, p-type, and n-type Si), on the performance of LIB are investigated. In a coin cell configuration, the doped Si films are inferior to the pristine counterparts in terms of irreversible capacity loss at the first circle, possibly due to incorporation of more lithium ions with a higher conductivity in the former. Intriguingly, boron and arsenic ions are demonstrated as regulating dopants that can deteriorate (for the former) or enhance (for the latter) the capacity retention and rate capabilities of the pristine Si-based LIBs. Electrochemical impedance spectroscopy and microstructure characterizations reveal that the high electrical conductivity and chemical reactivity of boron ions with electrolytes aggravate the formation and propagation of cracks into the depth during cycling and thicken the thickness of solid electrode interphase, consequently increasing charge transfer impedance. This study clarifies the working mechanisms of different doping species in the Si thin film anodes in response to electrochemical cycling and shed light on the improved performance of thin film based LIBs with appropriate dopants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaede完成签到,获得积分10
1秒前
Shuyang发布了新的文献求助10
1秒前
淡淡兔子完成签到 ,获得积分10
1秒前
Z123发布了新的文献求助10
2秒前
3秒前
3秒前
忐忑的以旋完成签到,获得积分20
5秒前
哦哦耶耶完成签到,获得积分10
5秒前
混子发布了新的文献求助10
6秒前
8秒前
xiuwen发布了新的文献求助10
8秒前
Leon应助科研通管家采纳,获得20
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
福star高照完成签到,获得积分10
8秒前
毛豆应助科研通管家采纳,获得30
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
万能图书馆应助小白小王采纳,获得10
9秒前
9秒前
SciGPT应助oookkay采纳,获得20
11秒前
扣我头上发布了新的文献求助10
11秒前
听雨发布了新的文献求助10
11秒前
向往发布了新的文献求助10
12秒前
jcz发布了新的文献求助30
14秒前
ooeleven11发布了新的文献求助10
15秒前
脑洞疼应助LV采纳,获得10
18秒前
科目三应助混子采纳,获得30
19秒前
科研通AI5应助锦云采纳,获得10
20秒前
Lucas应助九城采纳,获得10
20秒前
丘比特应助伊酒采纳,获得30
21秒前
21秒前
顾矜应助shuang0116采纳,获得10
21秒前
科研通AI2S应助皮念寒采纳,获得10
22秒前
Jasper应助cjl采纳,获得10
24秒前
辛勤的鱼发布了新的文献求助20
25秒前
Litm完成签到 ,获得积分10
25秒前
25秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475840
求助须知:如何正确求助?哪些是违规求助? 3067547
关于积分的说明 9104650
捐赠科研通 2759116
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204