Video source camera identification using fusion of texture features and noise fingerprint

人工智能 指纹(计算) 计算机视觉 鉴定(生物学) 计算机科学 噪音(视频) 纹理(宇宙学) 融合 模式识别(心理学) 图像(数学) 语言学 植物 生物 哲学
作者
Tigga Anmol,K. Sitara
出处
期刊:Forensic Science International: Digital Investigation [Elsevier]
卷期号:49: 301746-301746
标识
DOI:10.1016/j.fsidi.2024.301746
摘要

In Video forensics, the objective of Source Camera Identification (SCI) is to identify and verify the origin of a video that is under investigation. This aids the investigator to trace the video to its owner or narrow down the search space for identifying the offender. Nowadays, it is easy to record and share videos via internet or social media with smartphones. The availability of sophisticated video editing tools and software allow offenders to modify video's context. Thus, identifying the right source camera that was used to capture the video becomes complicated and strenuous. Existing methods based on video metadata information are no longer reliable as it could be modified or stripped off. Better forensic procedures are therefore required to prove the authenticity and integrity of the video that will be used as evidence in court of law. Certain inherent camera sensor properties such as, subtle traces of Photo Response Non-Uniformity (PRNU) are present in all captured videos due to unnoticeable defect during the manufacture of camera's sensor. These properties are used in SCI to classify devices or models as they are unique. In this work, we focus on SCI from videos or Video Source Camera Identification (VSCI) to verify the authenticity of videos. PRNU can be affected by highly textured content or post-processing when computed from a set of flat field images. To mitigate these effects, Higher Order Wavelet Statistics (HOWS) information from PRNU of a video I-frame is combined with information from two other texture features i.e., Local Binary Pattern (LBP) and Gray Level Co-occurrence Matrix (GLCM). The extracted feature vector is fused via concatenation and fed to Support Vector Machine (SVM) classifier to perform training and testing for VSCI. Experimental evaluation of our proposed method on videos from different publicly available datasets show the effectiveness of our method in terms of accuracy, resource efficiency, and complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶听枫发布了新的文献求助10
2秒前
领导范儿应助Ting222采纳,获得10
3秒前
wanci应助Yichao采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
7秒前
8秒前
苹果听枫完成签到,获得积分10
8秒前
去追一只鹿完成签到 ,获得积分10
9秒前
jin1233发布了新的文献求助10
9秒前
侧耳倾听完成签到,获得积分20
9秒前
都是发布了新的文献求助50
11秒前
CipherSage应助DW采纳,获得10
11秒前
12秒前
Lysine发布了新的文献求助10
12秒前
12秒前
12秒前
挺喜欢你发布了新的文献求助10
12秒前
12秒前
Owen应助李新悦采纳,获得10
13秒前
acommonreader完成签到,获得积分10
14秒前
15秒前
勤恳的一斩完成签到,获得积分10
15秒前
qq完成签到,获得积分10
15秒前
tianzml0应助xuxingjie采纳,获得10
15秒前
XM发布了新的文献求助10
17秒前
陈军完成签到,获得积分0
17秒前
zhlh完成签到,获得积分10
17秒前
叶艳霞完成签到,获得积分10
17秒前
18秒前
Hui应助挺喜欢你采纳,获得10
18秒前
chenchen完成签到,获得积分10
18秒前
ayuyu完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
ZYY发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160183
求助须知:如何正确求助?哪些是违规求助? 2811217
关于积分的说明 7891442
捐赠科研通 2470335
什么是DOI,文献DOI怎么找? 1315418
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038