Video source camera identification using fusion of texture features and noise fingerprint

人工智能 指纹(计算) 计算机视觉 鉴定(生物学) 计算机科学 噪音(视频) 纹理(宇宙学) 融合 模式识别(心理学) 图像(数学) 语言学 哲学 植物 生物
作者
Tigga Anmol,K. Sitara
出处
期刊:Forensic Science International: Digital Investigation [Elsevier BV]
卷期号:49: 301746-301746
标识
DOI:10.1016/j.fsidi.2024.301746
摘要

In Video forensics, the objective of Source Camera Identification (SCI) is to identify and verify the origin of a video that is under investigation. This aids the investigator to trace the video to its owner or narrow down the search space for identifying the offender. Nowadays, it is easy to record and share videos via internet or social media with smartphones. The availability of sophisticated video editing tools and software allow offenders to modify video's context. Thus, identifying the right source camera that was used to capture the video becomes complicated and strenuous. Existing methods based on video metadata information are no longer reliable as it could be modified or stripped off. Better forensic procedures are therefore required to prove the authenticity and integrity of the video that will be used as evidence in court of law. Certain inherent camera sensor properties such as, subtle traces of Photo Response Non-Uniformity (PRNU) are present in all captured videos due to unnoticeable defect during the manufacture of camera's sensor. These properties are used in SCI to classify devices or models as they are unique. In this work, we focus on SCI from videos or Video Source Camera Identification (VSCI) to verify the authenticity of videos. PRNU can be affected by highly textured content or post-processing when computed from a set of flat field images. To mitigate these effects, Higher Order Wavelet Statistics (HOWS) information from PRNU of a video I-frame is combined with information from two other texture features i.e., Local Binary Pattern (LBP) and Gray Level Co-occurrence Matrix (GLCM). The extracted feature vector is fused via concatenation and fed to Support Vector Machine (SVM) classifier to perform training and testing for VSCI. Experimental evaluation of our proposed method on videos from different publicly available datasets show the effectiveness of our method in terms of accuracy, resource efficiency, and complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李健应助苹果秋灵采纳,获得10
2秒前
3秒前
一口蒜苗完成签到,获得积分10
3秒前
5秒前
城南完成签到,获得积分10
6秒前
英俊的铭应助牛牛眉目采纳,获得10
6秒前
李文霄完成签到 ,获得积分10
6秒前
打打应助研友_kngxbZ采纳,获得10
7秒前
江念发布了新的文献求助30
8秒前
Chambray完成签到,获得积分10
8秒前
Selonfer完成签到,获得积分10
8秒前
10秒前
所所应助banlichen采纳,获得10
10秒前
HHH发布了新的文献求助10
10秒前
Pendragon发布了新的文献求助10
12秒前
充电宝应助加油加油采纳,获得10
14秒前
goldNAN发布了新的文献求助10
16秒前
一棵草完成签到,获得积分10
16秒前
zz应助淡淡的绿柳采纳,获得10
16秒前
19秒前
21秒前
在水一方应助跳跳虎采纳,获得10
21秒前
睿诺应助Chambray采纳,获得10
22秒前
LeonZhang完成签到,获得积分10
22秒前
22秒前
研友_kngxbZ发布了新的文献求助10
23秒前
麦乐提完成签到,获得积分10
24秒前
无聊的万天完成签到,获得积分10
25秒前
25秒前
生动的电脑完成签到,获得积分20
26秒前
加油加油发布了新的文献求助10
26秒前
善学以致用应助2023204306324采纳,获得10
27秒前
WUT完成签到,获得积分10
27秒前
鱼干发布了新的文献求助10
28秒前
隐形曼青应助幽默从安采纳,获得10
29秒前
TYJ发布了新的文献求助10
30秒前
小蘑菇应助牛牛眉目采纳,获得10
30秒前
君君发布了新的文献求助10
31秒前
可爱香槟发布了新的文献求助20
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388