亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evolutionary Optimization Methods for High-Dimensional Expensive Problems: A Survey

计算机科学 数学优化 数学
作者
MengChu Zhou,Meiji Cui,Dian Xu,Shuwei Zhu,Ziyan Zhao,Abdullah Abusorrah
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 1092-1105 被引量:20
标识
DOI:10.1109/jas.2024.124320
摘要

Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization problems. The past decade has also witnessed their fast progress to solve a class of challenging optimization problems called high-dimensional expensive problems (HEPs). The evaluation of their objective fitness requires expensive resource due to their use of time-consuming physical experiments or computer simulations. Moreover, it is hard to traverse the huge search space within reasonable resource as problem dimension increases. Traditional evolutionary algorithms (EAs) tend to fail to solve HEPs competently because they need to conduct many such expensive evaluations before achieving satisfactory results. To reduce such evaluations, many novel surrogate-assisted algorithms emerge to cope with HEPs in recent years. Yet there lacks a thorough review of the state of the art in this specific and important area. This paper provides a comprehensive survey of these evolutionary algorithms for HEPs. We start with a brief introduction to the research status and the basic concepts of HEPs. Then, we present surrogate-assisted evolutionary algorithms for HEPs from four main aspects. We also give comparative results of some representative algorithms and application examples. Finally, we indicate open challenges and several promising directions to advance the progress in evolutionary optimization algorithms for HEPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿巴完成签到 ,获得积分10
2秒前
7秒前
10秒前
Yong完成签到 ,获得积分10
11秒前
宋佳珍完成签到,获得积分10
12秒前
Tututu发布了新的文献求助10
14秒前
24秒前
酷波er应助张志超采纳,获得10
31秒前
34秒前
sissiarno应助科研通管家采纳,获得30
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
47秒前
li199624完成签到,获得积分20
49秒前
蛋花完成签到,获得积分20
52秒前
55秒前
li199624发布了新的文献求助30
1分钟前
1分钟前
salan完成签到,获得积分0
1分钟前
yanjun发布了新的文献求助10
1分钟前
1分钟前
yanjun完成签到,获得积分10
1分钟前
迅速寻琴完成签到 ,获得积分10
2分钟前
ninomae完成签到 ,获得积分10
2分钟前
2分钟前
上官若男应助合适怜阳采纳,获得10
2分钟前
sissiarno应助科研通管家采纳,获得30
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
传奇3应助不周采纳,获得10
2分钟前
2分钟前
合适怜阳完成签到,获得积分20
2分钟前
3分钟前
3分钟前
从容的火龙果完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
文艺的小兔子应助张志超采纳,获得10
3分钟前
西奥牧马完成签到 ,获得积分10
3分钟前
3分钟前
小文cremen完成签到 ,获得积分10
4分钟前
AJ完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253976
求助须知:如何正确求助?哪些是违规求助? 4417117
关于积分的说明 13750960
捐赠科研通 4289697
什么是DOI,文献DOI怎么找? 2353648
邀请新用户注册赠送积分活动 1350358
关于科研通互助平台的介绍 1310375