Evolutionary Optimization Methods for High-Dimensional Expensive Problems: A Survey

计算机科学 数学优化 数学
作者
MengChu Zhou,Meiji Cui,Dian Xu,Shuwei Zhu,Ziyan Zhao,Abdullah Abusorrah
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 1092-1105 被引量:6
标识
DOI:10.1109/jas.2024.124320
摘要

Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization problems. The past decade has also witnessed their fast progress to solve a class of challenging optimization problems called high-dimensional expensive problems (HEPs). The evaluation of their objective fitness requires expensive resource due to their use of time-consuming physical experiments or computer simulations. Moreover, it is hard to traverse the huge search space within reasonable resource as problem dimension increases. Traditional evolutionary algorithms (EAs) tend to fail to solve HEPs competently because they need to conduct many such expensive evaluations before achieving satisfactory results. To reduce such evaluations, many novel surrogate-assisted algorithms emerge to cope with HEPs in recent years. Yet there lacks a thorough review of the state of the art in this specific and important area. This paper provides a comprehensive survey of these evolutionary algorithms for HEPs. We start with a brief introduction to the research status and the basic concepts of HEPs. Then, we present surrogate-assisted evolutionary algorithms for HEPs from four main aspects. We also give comparative results of some representative algorithms and application examples. Finally, we indicate open challenges and several promising directions to advance the progress in evolutionary optimization algorithms for HEPs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤的妙之完成签到,获得积分10
1秒前
研友_VZG7GZ应助SSS采纳,获得10
1秒前
jiejie发布了新的文献求助10
1秒前
曾经电源发布了新的文献求助10
1秒前
脑洞疼应助美好眼神采纳,获得10
1秒前
LZY发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
合适太清完成签到,获得积分10
3秒前
嘀嘀完成签到,获得积分10
3秒前
3秒前
咩咩完成签到,获得积分10
4秒前
无花果应助amumu采纳,获得10
5秒前
5秒前
小冷发布了新的文献求助10
5秒前
5秒前
Len发布了新的文献求助10
6秒前
慕青应助句号采纳,获得10
7秒前
zz关闭了zz文献求助
7秒前
研友_VZG7GZ应助韩同鑫采纳,获得10
7秒前
萤火虫完成签到,获得积分10
7秒前
8秒前
8秒前
曾经电源完成签到,获得积分10
9秒前
白临渊发布了新的文献求助10
9秒前
lidanni完成签到,获得积分10
9秒前
10秒前
GK发布了新的文献求助10
10秒前
minus发布了新的文献求助10
11秒前
llllll完成签到,获得积分20
11秒前
雪白鸿涛完成签到,获得积分10
11秒前
fanny发布了新的文献求助10
12秒前
赘婿应助uvk采纳,获得10
12秒前
个性的紫菜应助月亮采纳,获得20
12秒前
廉锦枫发布了新的文献求助10
13秒前
温暖的碧彤完成签到,获得积分10
14秒前
安静一曲发布了新的文献求助10
14秒前
jiejie完成签到,获得积分10
15秒前
微笑超发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160338
求助须知:如何正确求助?哪些是违规求助? 2811485
关于积分的说明 7892612
捐赠科研通 2470499
什么是DOI,文献DOI怎么找? 1315589
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602038