Evolutionary Optimization Methods for High-Dimensional Expensive Problems: A Survey

计算机科学 数学优化 数学
作者
MengChu Zhou,Meiji Cui,Dian Xu,Shuwei Zhu,Ziyan Zhao,Abdullah Abusorrah
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 1092-1105 被引量:20
标识
DOI:10.1109/jas.2024.124320
摘要

Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization problems. The past decade has also witnessed their fast progress to solve a class of challenging optimization problems called high-dimensional expensive problems (HEPs). The evaluation of their objective fitness requires expensive resource due to their use of time-consuming physical experiments or computer simulations. Moreover, it is hard to traverse the huge search space within reasonable resource as problem dimension increases. Traditional evolutionary algorithms (EAs) tend to fail to solve HEPs competently because they need to conduct many such expensive evaluations before achieving satisfactory results. To reduce such evaluations, many novel surrogate-assisted algorithms emerge to cope with HEPs in recent years. Yet there lacks a thorough review of the state of the art in this specific and important area. This paper provides a comprehensive survey of these evolutionary algorithms for HEPs. We start with a brief introduction to the research status and the basic concepts of HEPs. Then, we present surrogate-assisted evolutionary algorithms for HEPs from four main aspects. We also give comparative results of some representative algorithms and application examples. Finally, we indicate open challenges and several promising directions to advance the progress in evolutionary optimization algorithms for HEPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苦短完成签到,获得积分20
刚刚
1秒前
SUN发布了新的文献求助10
1秒前
西门问道完成签到,获得积分10
2秒前
小花花完成签到,获得积分10
2秒前
脑洞疼应助AI_S采纳,获得10
3秒前
3秒前
runner发布了新的文献求助10
3秒前
4秒前
hihi完成签到,获得积分10
4秒前
5秒前
生物民工完成签到,获得积分10
5秒前
pluto应助老朱采纳,获得10
6秒前
6秒前
mayberichard发布了新的文献求助10
6秒前
6秒前
7秒前
123发布了新的文献求助10
7秒前
7秒前
llllllll完成签到,获得积分10
9秒前
jzw完成签到,获得积分20
9秒前
dorothy_meng完成签到,获得积分10
9秒前
10秒前
10秒前
羊花花发布了新的文献求助20
10秒前
Z123完成签到,获得积分10
10秒前
帝休完成签到 ,获得积分10
11秒前
12秒前
LL完成签到,获得积分10
12秒前
jzw发布了新的文献求助10
12秒前
cen发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
宋宋宋2发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298