Evolutionary Optimization Methods for High-Dimensional Expensive Problems: A Survey

计算机科学 数学优化 数学
作者
MengChu Zhou,Meiji Cui,Dian Xu,Shuwei Zhu,Ziyan Zhao,Abdullah Abusorrah
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 1092-1105 被引量:20
标识
DOI:10.1109/jas.2024.124320
摘要

Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization problems. The past decade has also witnessed their fast progress to solve a class of challenging optimization problems called high-dimensional expensive problems (HEPs). The evaluation of their objective fitness requires expensive resource due to their use of time-consuming physical experiments or computer simulations. Moreover, it is hard to traverse the huge search space within reasonable resource as problem dimension increases. Traditional evolutionary algorithms (EAs) tend to fail to solve HEPs competently because they need to conduct many such expensive evaluations before achieving satisfactory results. To reduce such evaluations, many novel surrogate-assisted algorithms emerge to cope with HEPs in recent years. Yet there lacks a thorough review of the state of the art in this specific and important area. This paper provides a comprehensive survey of these evolutionary algorithms for HEPs. We start with a brief introduction to the research status and the basic concepts of HEPs. Then, we present surrogate-assisted evolutionary algorithms for HEPs from four main aspects. We also give comparative results of some representative algorithms and application examples. Finally, we indicate open challenges and several promising directions to advance the progress in evolutionary optimization algorithms for HEPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静的红酒完成签到,获得积分10
1秒前
yzxzdm完成签到 ,获得积分10
1秒前
Yara.H完成签到 ,获得积分10
1秒前
Meng完成签到,获得积分10
2秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
包容追命发布了新的文献求助10
8秒前
8秒前
梦鱼完成签到,获得积分10
9秒前
小林不熬夜完成签到,获得积分10
9秒前
玛卡巴卡完成签到,获得积分10
10秒前
希尔伯特发布了新的文献求助10
12秒前
Jasper应助dailyyang采纳,获得10
12秒前
冬凌草完成签到 ,获得积分10
12秒前
阿若完成签到,获得积分10
12秒前
英姑应助单纯冰棍采纳,获得10
12秒前
高高从霜完成签到 ,获得积分10
13秒前
lmh011115完成签到,获得积分10
13秒前
包容追命完成签到,获得积分20
14秒前
zhenya完成签到,获得积分10
15秒前
xiang929完成签到 ,获得积分10
17秒前
小文子完成签到,获得积分10
17秒前
Mae完成签到 ,获得积分10
18秒前
18秒前
19秒前
19秒前
X欣完成签到,获得积分10
19秒前
lelele完成签到,获得积分10
19秒前
可爱的函函应助luxi0714采纳,获得10
21秒前
月儿完成签到 ,获得积分10
21秒前
小曾应助景清采纳,获得10
22秒前
22秒前
大力的忆霜完成签到,获得积分10
22秒前
贪玩大侠发布了新的文献求助10
23秒前
学不懂数学应助苹果沛柔采纳,获得10
23秒前
24秒前
万能图书馆应助玛卡巴卡采纳,获得10
24秒前
呵呵完成签到,获得积分10
25秒前
CodeCraft应助wuy采纳,获得10
26秒前
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048