重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Evolutionary Optimization Methods for High-Dimensional Expensive Problems: A Survey

计算机科学 数学优化 数学
作者
MengChu Zhou,Meiji Cui,Dian Xu,Shuwei Zhu,Ziyan Zhao,Abdullah Abusorrah
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 1092-1105 被引量:62
标识
DOI:10.1109/jas.2024.124320
摘要

Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization problems. The past decade has also witnessed their fast progress to solve a class of challenging optimization problems called high-dimensional expensive problems (HEPs). The evaluation of their objective fitness requires expensive resource due to their use of time-consuming physical experiments or computer simulations. Moreover, it is hard to traverse the huge search space within reasonable resource as problem dimension increases. Traditional evolutionary algorithms (EAs) tend to fail to solve HEPs competently because they need to conduct many such expensive evaluations before achieving satisfactory results. To reduce such evaluations, many novel surrogate-assisted algorithms emerge to cope with HEPs in recent years. Yet there lacks a thorough review of the state of the art in this specific and important area. This paper provides a comprehensive survey of these evolutionary algorithms for HEPs. We start with a brief introduction to the research status and the basic concepts of HEPs. Then, we present surrogate-assisted evolutionary algorithms for HEPs from four main aspects. We also give comparative results of some representative algorithms and application examples. Finally, we indicate open challenges and several promising directions to advance the progress in evolutionary optimization algorithms for HEPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
搜集达人应助谨慎乐安采纳,获得80
2秒前
科研通AI2S应助苏莉婷采纳,获得10
2秒前
2秒前
科研通AI2S应助霜糖采纳,获得10
3秒前
Sau1完成签到,获得积分10
3秒前
3秒前
3秒前
甜蜜乐松发布了新的文献求助10
3秒前
现代的澜完成签到,获得积分10
3秒前
momorin发布了新的文献求助50
3秒前
4秒前
浮游应助等待的语海采纳,获得10
4秒前
SciGPT应助内向的涵菡采纳,获得10
4秒前
icee发布了新的文献求助10
4秒前
shineshine发布了新的文献求助10
4秒前
5秒前
Hello应助默己采纳,获得10
5秒前
小蘑菇应助默己采纳,获得10
5秒前
善学以致用应助默己采纳,获得10
6秒前
anfly完成签到,获得积分10
6秒前
小蘑菇应助默己采纳,获得10
6秒前
顾矜应助默己采纳,获得10
6秒前
上官若男应助默己采纳,获得10
6秒前
NexusExplorer应助默己采纳,获得10
6秒前
可爱的函函应助默己采纳,获得10
6秒前
所所应助默己采纳,获得10
6秒前
默默完成签到 ,获得积分10
6秒前
元神大王发布了新的文献求助10
7秒前
7秒前
东莱牧鲲完成签到,获得积分10
7秒前
iui飞发布了新的文献求助10
7秒前
7秒前
科研通AI6应助活泼小笼包采纳,获得10
7秒前
一键变瘦发布了新的文献求助10
8秒前
8秒前
atad2发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516