蒙特卡罗方法
稳健性(进化)
饱和(图论)
颈内静脉
材料科学
计算机科学
光学
生物医学工程
物理
医学
放射科
化学
数学
统计
生物化学
基因
组合数学
作者
Chin-Hsuan Sun,Hao-Wei Lee,Ya-Hua Tsai,Jiarong Luo,Kung‐Bin Sung
出处
期刊:Optics Letters
[The Optical Society]
日期:2024-04-16
卷期号:49 (10): 2669-2669
摘要
Central venous oxygen saturation (ScvO2) is an important parameter for assessing global oxygen usage and guiding clinical interventions. However, measuring ScvO2 requires invasive catheterization. As an alternative, we aim to noninvasively and continuously measure changes in oxygen saturation of the internal jugular vein (SijvO2) by a multi-channel near-infrared spectroscopy system. The relation between the measured reflectance and changes in SijvO2 is modeled by Monte Carlo simulations and used to build a prediction model using deep neural networks (DNNs). The prediction model is tested with simulated data to show robustness to individual variations in tissue optical properties. The proposed technique is promising to provide a noninvasive tool for monitoring the stability of brain oxygenation in broad patient populations.
科研通智能强力驱动
Strongly Powered by AbleSci AI