Constructing dual-scale high-entropy alloy/polymer interpenetrating networks to develop a lightweight composite with high strength and excellent damping capacity

材料科学 阻尼能力 复合材料 复合数 比强度 抗压强度 聚合物 损耗系数 碳纳米管 合金 光电子学 电介质
作者
Zhaohan Jiang,Xinhui Cao,Jiayi Kou,Qian Yu,Hanyu Cai,Liuxiong Luo,Xiangyu Yu,Shen Gong,Zhou Li
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:489: 151222-151222 被引量:9
标识
DOI:10.1016/j.cej.2024.151222
摘要

Lightweight materials with high strength and excellent damping capacity are of great significance for reducing weight and vibration and maintaining stability in industrial applications. However, these characteristics are usually difficult to achieve simultaneously in traditional damping materials. Here, we provide a design strategy for dual-scale interpenetrating networks. By infiltrating the viscoelastic polymer containing CrMnFeCoNi nanoalloy/carbon nanotube networks into CrMnFeCoNi high-entropy shape memory alloy foam with a three-dimensional network structure, the dual-scale CrMnFeCoNi/polymer interpenetrating phase composite was developed. When the carbon nanotube loading is 2 wt%, the composite exhibits a compressive strength of 37.2 MPa and an energy absorption capacity of 22.5 MJ·m−3 (ε = 65 %), with a mere density of 2.528 g·cm−3. In the temperature range of 20 ∼ 150℃, its loss factor exceeds 0.132 with a peak value of 0.206. Compared with CrMnFeCoNi foam, its compressive strength, energy absorption capacity and peak internal friction are increased by 85 %, 65 % and 156 %, respectively. The construction of dual-scale interpenetrating networks introduces high-density interfaces, and the coupling of multi-scale intrinsic damping and interface damping endows the composite with high ground-state damping. The superposition of the phase transformation peak of CrMnFeCoNi foam and the glass transition peak of polymer composite matrix enables a wide damping temperature window. This study offers a new perspective for developing high-performance damping materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旗树树发布了新的文献求助10
1秒前
跳跃馒头完成签到,获得积分10
3秒前
Jj完成签到,获得积分10
3秒前
wxZeng完成签到,获得积分10
5秒前
迷失的悠悠完成签到,获得积分10
5秒前
小马哥完成签到,获得积分10
5秒前
吕圆圆圆啊完成签到,获得积分10
7秒前
务实鞅完成签到 ,获得积分10
7秒前
影流完成签到,获得积分10
8秒前
8秒前
乖猫要努力完成签到,获得积分10
9秒前
烟花应助壮观梦易采纳,获得10
9秒前
skinnylove完成签到,获得积分10
10秒前
缓慢的王完成签到,获得积分10
11秒前
闪闪的斑马完成签到,获得积分10
12秒前
华仔应助mouset270采纳,获得30
12秒前
毅诚菌完成签到,获得积分10
13秒前
Akim应助跳跃馒头采纳,获得10
14秒前
盼盼完成签到,获得积分10
14秒前
领导范儿应助科研通管家采纳,获得30
14秒前
Singularity应助科研通管家采纳,获得10
15秒前
风清扬应助科研通管家采纳,获得10
15秒前
愉快寄真完成签到,获得积分10
15秒前
苗玉完成签到,获得积分10
15秒前
huangqqk发布了新的文献求助10
17秒前
shineshine完成签到 ,获得积分10
18秒前
caozhi完成签到,获得积分10
19秒前
瀚泛完成签到,获得积分10
20秒前
CAOHOU应助大意的罡采纳,获得10
21秒前
22秒前
yunna_ning完成签到,获得积分0
22秒前
大鱼一条完成签到 ,获得积分10
23秒前
勤奋的天亦完成签到,获得积分10
23秒前
jane完成签到 ,获得积分10
24秒前
陈宗琴完成签到,获得积分10
24秒前
g7001完成签到,获得积分10
25秒前
老实的抽屉完成签到,获得积分10
26秒前
居崽完成签到 ,获得积分10
27秒前
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960190
求助须知:如何正确求助?哪些是违规求助? 3506348
关于积分的说明 11129231
捐赠科研通 3238527
什么是DOI,文献DOI怎么找? 1789763
邀请新用户注册赠送积分活动 871900
科研通“疑难数据库(出版商)”最低求助积分说明 803095