Ranking products through online opinions: a text analysis and regret theory-based approach

潜在Dirichlet分配 计算机科学 排名(信息检索) 后悔 主题模型 联营 人工智能 情绪分析 卷积神经网络 特征(语言学) 产品(数学) 机器学习 数据挖掘 情报检索 数学 语言学 哲学 几何学
作者
Kejia Chen,Jinju Zheng,Jian Jin
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:158: 111571-111571
标识
DOI:10.1016/j.asoc.2024.111571
摘要

With the development of e-shopping, a list of similar products can be found with a large volume of valuable customer reviews online. However, it is generally difficult to compare various aspects of similar products effectively by understanding all relevant online opinions. To help consumers, in this study, how products are ranked according to online reviews is investigated. Firstly, an SC-LDA (Seed Constraint-Latent Dirichlet Allocation) model, which is an extension of the classical topic model LDA (Latent Dirichlet Allocation), is proposed to extract product features. The must-link and cannot-link seed constraints are invited to estimate the probability expansion/reduction value. They help to affect the topic allocation by additional constraints in Gibbs sampling for a higher accuracy on feature extraction. Secondly, an improved convolutional memory neural network model is devised to analyze the sentiment polarity. It takes the advantages of CNN (convolutional neural network) and Bi-LSTM (bidirectional Long Short-Term Memory) and performs dynamic pooling in CNN to prevent the loss of important features. Besides, the concept of group satisfaction degree is introduced, which makes products be compared according to the Regret Theory. It ranks products without a commonly applied reference point and take consumer psychology into considerations. Finally, in the case study, an illustrative example is presented to evaluate the proposed framework. Categories of experiments show that the proposed framework provides consumers with effective purchase suggestions. Permanent link to reproducible Capsule: https://doi.org/10.24433/CO.6445683.v1 and https://doi.org/10.24433/CO.2658577.v1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Oyster发布了新的文献求助10
刚刚
1秒前
WENc发布了新的文献求助10
1秒前
Helly发布了新的文献求助10
1秒前
LWJ发布了新的文献求助10
2秒前
小蘑菇发布了新的文献求助10
2秒前
2秒前
3秒前
文光完成签到,获得积分10
3秒前
3秒前
4秒前
6秒前
中和皇极发布了新的文献求助10
6秒前
寒径斜关注了科研通微信公众号
7秒前
7秒前
cheng完成签到,获得积分10
8秒前
pokexuejiao发布了新的文献求助20
8秒前
努力仔发布了新的文献求助10
10秒前
11秒前
lu完成签到,获得积分10
11秒前
000完成签到,获得积分20
12秒前
12秒前
zxzb发布了新的文献求助10
12秒前
收拾收拾完成签到,获得积分10
13秒前
chen完成签到,获得积分10
13秒前
14秒前
Oyster完成签到,获得积分20
15秒前
潇洒冰旋完成签到 ,获得积分10
15秒前
褚香旋完成签到,获得积分10
15秒前
277发布了新的文献求助10
16秒前
16秒前
16秒前
细心荔枝发布了新的文献求助10
16秒前
Rondab应助活力的妙菡采纳,获得10
17秒前
lu发布了新的文献求助10
17秒前
YL完成签到,获得积分10
18秒前
18秒前
无花果应助guoguoguo采纳,获得10
18秒前
3080发布了新的文献求助20
19秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425