Ranking products through online opinions: a text analysis and regret theory-based approach

潜在Dirichlet分配 计算机科学 排名(信息检索) 后悔 主题模型 联营 人工智能 情绪分析 卷积神经网络 特征(语言学) 产品(数学) 机器学习 数据挖掘 情报检索 数学 哲学 几何学 语言学
作者
Kejia Chen,Jinju Zheng,Jian Jin
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:158: 111571-111571
标识
DOI:10.1016/j.asoc.2024.111571
摘要

With the development of e-shopping, a list of similar products can be found with a large volume of valuable customer reviews online. However, it is generally difficult to compare various aspects of similar products effectively by understanding all relevant online opinions. To help consumers, in this study, how products are ranked according to online reviews is investigated. Firstly, an SC-LDA (Seed Constraint-Latent Dirichlet Allocation) model, which is an extension of the classical topic model LDA (Latent Dirichlet Allocation), is proposed to extract product features. The must-link and cannot-link seed constraints are invited to estimate the probability expansion/reduction value. They help to affect the topic allocation by additional constraints in Gibbs sampling for a higher accuracy on feature extraction. Secondly, an improved convolutional memory neural network model is devised to analyze the sentiment polarity. It takes the advantages of CNN (convolutional neural network) and Bi-LSTM (bidirectional Long Short-Term Memory) and performs dynamic pooling in CNN to prevent the loss of important features. Besides, the concept of group satisfaction degree is introduced, which makes products be compared according to the Regret Theory. It ranks products without a commonly applied reference point and take consumer psychology into considerations. Finally, in the case study, an illustrative example is presented to evaluate the proposed framework. Categories of experiments show that the proposed framework provides consumers with effective purchase suggestions. Permanent link to reproducible Capsule: https://doi.org/10.24433/CO.6445683.v1 and https://doi.org/10.24433/CO.2658577.v1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助cy采纳,获得10
刚刚
Lucas应助cy采纳,获得10
刚刚
今后应助HH采纳,获得10
1秒前
科研通AI6.1应助xiankanyun采纳,获得30
2秒前
盯盯盯完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
xinasoooo完成签到 ,获得积分10
3秒前
Una关注了科研通微信公众号
3秒前
causjz完成签到,获得积分20
4秒前
Lulu发布了新的文献求助10
4秒前
CodeCraft应助lllll采纳,获得10
4秒前
5秒前
5秒前
小鱼发布了新的文献求助10
5秒前
5秒前
小狗博士完成签到,获得积分10
5秒前
自觉的依秋完成签到,获得积分10
5秒前
5秒前
Rosie完成签到,获得积分10
6秒前
慕青应助hongping采纳,获得10
6秒前
轨迹应助rry采纳,获得20
7秒前
7秒前
lalalalala发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
明亮惜天发布了新的文献求助10
11秒前
小黑鼠发布了新的文献求助10
12秒前
hhhha发布了新的文献求助10
12秒前
12秒前
疏影完成签到,获得积分10
14秒前
15秒前
曾高高完成签到,获得积分10
15秒前
光之剑完成签到,获得积分10
16秒前
16秒前
16秒前
zhoudada发布了新的文献求助10
16秒前
mm发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778959
求助须知:如何正确求助?哪些是违规求助? 5644592
关于积分的说明 15450766
捐赠科研通 4910444
什么是DOI,文献DOI怎么找? 2642671
邀请新用户注册赠送积分活动 1590372
关于科研通互助平台的介绍 1544741