Ranking products through online opinions: a text analysis and regret theory-based approach

潜在Dirichlet分配 计算机科学 排名(信息检索) 后悔 主题模型 联营 人工智能 情绪分析 卷积神经网络 特征(语言学) 产品(数学) 机器学习 数据挖掘 情报检索 数学 语言学 哲学 几何学
作者
Kejia Chen,Jinju Zheng,Jian Jin
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:158: 111571-111571
标识
DOI:10.1016/j.asoc.2024.111571
摘要

With the development of e-shopping, a list of similar products can be found with a large volume of valuable customer reviews online. However, it is generally difficult to compare various aspects of similar products effectively by understanding all relevant online opinions. To help consumers, in this study, how products are ranked according to online reviews is investigated. Firstly, an SC-LDA (Seed Constraint-Latent Dirichlet Allocation) model, which is an extension of the classical topic model LDA (Latent Dirichlet Allocation), is proposed to extract product features. The must-link and cannot-link seed constraints are invited to estimate the probability expansion/reduction value. They help to affect the topic allocation by additional constraints in Gibbs sampling for a higher accuracy on feature extraction. Secondly, an improved convolutional memory neural network model is devised to analyze the sentiment polarity. It takes the advantages of CNN (convolutional neural network) and Bi-LSTM (bidirectional Long Short-Term Memory) and performs dynamic pooling in CNN to prevent the loss of important features. Besides, the concept of group satisfaction degree is introduced, which makes products be compared according to the Regret Theory. It ranks products without a commonly applied reference point and take consumer psychology into considerations. Finally, in the case study, an illustrative example is presented to evaluate the proposed framework. Categories of experiments show that the proposed framework provides consumers with effective purchase suggestions. Permanent link to reproducible Capsule: https://doi.org/10.24433/CO.6445683.v1 and https://doi.org/10.24433/CO.2658577.v1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DL完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
李爱国应助koreyoshi采纳,获得10
1秒前
户学静发布了新的文献求助10
1秒前
桀庚发布了新的文献求助10
1秒前
传奇3应助WN采纳,获得10
1秒前
hsy309完成签到,获得积分10
2秒前
foxdaopo完成签到,获得积分10
2秒前
fabian完成签到,获得积分10
3秒前
3秒前
我是老大应助大胆诗云采纳,获得10
3秒前
gaugua发布了新的文献求助10
4秒前
深情安青应助亚铁氰化钾采纳,获得10
4秒前
颖火虫完成签到,获得积分10
4秒前
4秒前
GongPeijie完成签到,获得积分10
4秒前
4秒前
考尔菲德完成签到,获得积分10
5秒前
zdt发布了新的文献求助10
5秒前
TRY发布了新的文献求助10
5秒前
5秒前
Leon发布了新的文献求助10
5秒前
5秒前
上官若男应助LYZSh采纳,获得10
5秒前
6秒前
小小完成签到,获得积分10
6秒前
dynamoo发布了新的文献求助200
6秒前
6秒前
星star发布了新的文献求助10
6秒前
JamesPei应助DuLab李哥采纳,获得10
7秒前
RR完成签到 ,获得积分10
7秒前
CodeCraft应助超级绫采纳,获得10
7秒前
爱撒娇的黑米完成签到,获得积分10
7秒前
HXL完成签到,获得积分10
8秒前
秀丽静曼发布了新的文献求助10
8秒前
orixero应助PB采纳,获得10
8秒前
微笑霸完成签到,获得积分10
8秒前
NexusExplorer应助科研宝采纳,获得10
8秒前
wwho_O完成签到 ,获得积分10
8秒前
科研通AI6应助毓雅采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524025
求助须知:如何正确求助?哪些是违规求助? 4614655
关于积分的说明 14543905
捐赠科研通 4552420
什么是DOI,文献DOI怎么找? 2494845
邀请新用户注册赠送积分活动 1475559
关于科研通互助平台的介绍 1447219