Ranking products through online opinions: a text analysis and regret theory-based approach

潜在Dirichlet分配 计算机科学 排名(信息检索) 后悔 主题模型 联营 人工智能 情绪分析 卷积神经网络 特征(语言学) 产品(数学) 机器学习 数据挖掘 情报检索 数学 语言学 哲学 几何学
作者
Kejia Chen,Jinju Zheng,Jian Jin
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:158: 111571-111571
标识
DOI:10.1016/j.asoc.2024.111571
摘要

With the development of e-shopping, a list of similar products can be found with a large volume of valuable customer reviews online. However, it is generally difficult to compare various aspects of similar products effectively by understanding all relevant online opinions. To help consumers, in this study, how products are ranked according to online reviews is investigated. Firstly, an SC-LDA (Seed Constraint-Latent Dirichlet Allocation) model, which is an extension of the classical topic model LDA (Latent Dirichlet Allocation), is proposed to extract product features. The must-link and cannot-link seed constraints are invited to estimate the probability expansion/reduction value. They help to affect the topic allocation by additional constraints in Gibbs sampling for a higher accuracy on feature extraction. Secondly, an improved convolutional memory neural network model is devised to analyze the sentiment polarity. It takes the advantages of CNN (convolutional neural network) and Bi-LSTM (bidirectional Long Short-Term Memory) and performs dynamic pooling in CNN to prevent the loss of important features. Besides, the concept of group satisfaction degree is introduced, which makes products be compared according to the Regret Theory. It ranks products without a commonly applied reference point and take consumer psychology into considerations. Finally, in the case study, an illustrative example is presented to evaluate the proposed framework. Categories of experiments show that the proposed framework provides consumers with effective purchase suggestions. Permanent link to reproducible Capsule: https://doi.org/10.24433/CO.6445683.v1 and https://doi.org/10.24433/CO.2658577.v1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨蒙蒙完成签到,获得积分10
刚刚
1秒前
4秒前
5秒前
英姑应助雨蒙蒙采纳,获得10
5秒前
lichengxun完成签到,获得积分20
6秒前
无花果应助正在努力的May采纳,获得10
6秒前
sping完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
薰硝壤应助lichengxun采纳,获得30
10秒前
10秒前
11秒前
11秒前
12秒前
爱与诚完成签到,获得积分10
13秒前
Lanx发布了新的文献求助10
13秒前
14秒前
K珑完成签到,获得积分10
15秒前
16秒前
17秒前
鸡鱼蚝发布了新的文献求助10
18秒前
爱与诚发布了新的文献求助30
18秒前
FashionBoy应助vv采纳,获得10
19秒前
洪栋国发布了新的文献求助10
20秒前
叶落知秋发布了新的文献求助10
20秒前
矮小的聪展完成签到,获得积分10
20秒前
打打应助喜乐采纳,获得10
21秒前
白敬亭发布了新的文献求助10
21秒前
22秒前
22秒前
吧嗒嗒发布了新的文献求助10
23秒前
ding应助双下巴真可爱采纳,获得10
23秒前
粗犷的沛容举报She求助涉嫌违规
24秒前
qhdsyxy完成签到 ,获得积分0
25秒前
清爽的靖柔完成签到,获得积分10
26秒前
花生仁发布了新的文献求助10
27秒前
洪栋国完成签到,获得积分10
29秒前
sping发布了新的文献求助10
30秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
the women :a novel 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055654
求助须知:如何正确求助?哪些是违规求助? 2712323
关于积分的说明 7430846
捐赠科研通 2357251
什么是DOI,文献DOI怎么找? 1248668
科研通“疑难数据库(出版商)”最低求助积分说明 606786
版权声明 596144