Energy-Efficient Trajectory Optimization with Wireless Charging in UAV-Assisted MEC Based on Multi-Objective Reinforcement Learning

强化学习 计算机科学 弹道 无线 轨迹优化 能量(信号处理) 实时计算 人工智能 电信 统计 物理 数学 天文
作者
Fuhong Song,Mingsen Deng,Huanlai Xing,Yanping Liu,Fei Ye,Zhiwen Xiao
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:7
标识
DOI:10.1109/tmc.2024.3384405
摘要

This paper investigates the problem of energy-efficient trajectory optimization with wireless charging (ETWC) in an unmanned aerial vehicle (UAV)-assisted mobile edge computing system. A UAV is dispatched to collect computation tasks from specific ground smart devices (GSDs) within its coverage while transmitting energy to the other GSDs. In addition, a high-altitude platform with a laser beam is deployed in the stratosphere to charge the UAV, so as to maintain its flight mission. The ETWC problem is characterized by multi-objective optimization, aiming to maximize both the energy efficiency of the UAV and the number of tasks collected via optimizing the UAV's flight trajectories. The conflict between the two objectives in the problem makes it quite challenging. Recently, some single-objective reinforcement learning (SORL) algorithms have been introduced to address the aforementioned problem. Nevertheless, these SORLs adopt linear scalarization to define the user utility, thus ignoring the conflict between objectives. Furthermore, in dynamic MEC scenarios, the relative importance assigned to each objective may vary over time, posing significant challenges for conventional SORLs. To solve the challenge, we first build a multi-objective Markov decision process that has a vectorial reward mechanism. There is a corresponding relationship between each component of the reward and one of the two objectives. Then, we propose a new trace-based experience replay scheme to modify sample efficiency and reduce replay buffer bias, resulting in a modified multi-objective reinforcement learning algorithm. The experiment results validate that the proposed algorithm can obtain better adaptability to dynamic preferences and a more favorable balance between objectives compared with several algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dede发布了新的文献求助10
1秒前
郭郭发布了新的文献求助10
3秒前
yyymmma应助yyy采纳,获得10
6秒前
禾泽完成签到,获得积分10
6秒前
辛勤的擎宇完成签到,获得积分10
6秒前
威武富完成签到,获得积分10
7秒前
桐桐应助科研小兵兵采纳,获得10
7秒前
丁鹏笑完成签到 ,获得积分0
9秒前
11秒前
12秒前
evak发布了新的文献求助10
12秒前
YY完成签到,获得积分10
13秒前
万能图书馆应助无情人达采纳,获得10
14秒前
小马甲应助想大大只采纳,获得30
14秒前
搜集达人应助Gzever采纳,获得10
14秒前
shihui发布了新的文献求助10
15秒前
谨慎惋庭完成签到,获得积分10
15秒前
欣慰问凝发布了新的文献求助10
16秒前
16秒前
小米辣完成签到,获得积分10
16秒前
桃子发布了新的文献求助10
18秒前
郭倩发布了新的文献求助10
18秒前
molamola发布了新的文献求助10
18秒前
孤独梦安发布了新的文献求助10
21秒前
leilan发布了新的文献求助30
22秒前
无花果应助Chem34采纳,获得10
22秒前
23秒前
赘婿应助爱撒娇的寻真采纳,获得10
24秒前
无花果应助huahua0728采纳,获得10
25秒前
学校不买数据库完成签到,获得积分10
26秒前
领导范儿应助郭倩采纳,获得10
28秒前
小萝卜头发布了新的文献求助10
28秒前
29秒前
dede完成签到,获得积分10
30秒前
32秒前
33秒前
34秒前
想大大只发布了新的文献求助30
34秒前
evak完成签到,获得积分10
35秒前
36秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256323
求助须知:如何正确求助?哪些是违规求助? 2898596
关于积分的说明 8301615
捐赠科研通 2567759
什么是DOI,文献DOI怎么找? 1394681
科研通“疑难数据库(出版商)”最低求助积分说明 652913
邀请新用户注册赠送积分活动 630557