Energy-Efficient Trajectory Optimization with Wireless Charging in UAV-Assisted MEC Based on Multi-Objective Reinforcement Learning

强化学习 计算机科学 弹道 无线 轨迹优化 能量(信号处理) 实时计算 人工智能 电信 天文 数学 统计 物理
作者
Fuhong Song,Mingsen Deng,Huanlai Xing,Yanping Liu,Fei Ye,Zhiwen Xiao
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:: 1-18 被引量:7
标识
DOI:10.1109/tmc.2024.3384405
摘要

This paper investigates the problem of energy-efficient trajectory optimization with wireless charging (ETWC) in an unmanned aerial vehicle (UAV)-assisted mobile edge computing system. A UAV is dispatched to collect computation tasks from specific ground smart devices (GSDs) within its coverage while transmitting energy to the other GSDs. In addition, a high-altitude platform with a laser beam is deployed in the stratosphere to charge the UAV, so as to maintain its flight mission. The ETWC problem is characterized by multi-objective optimization, aiming to maximize both the energy efficiency of the UAV and the number of tasks collected via optimizing the UAV's flight trajectories. The conflict between the two objectives in the problem makes it quite challenging. Recently, some single-objective reinforcement learning (SORL) algorithms have been introduced to address the aforementioned problem. Nevertheless, these SORLs adopt linear scalarization to define the user utility, thus ignoring the conflict between objectives. Furthermore, in dynamic MEC scenarios, the relative importance assigned to each objective may vary over time, posing significant challenges for conventional SORLs. To solve the challenge, we first build a multi-objective Markov decision process that has a vectorial reward mechanism. There is a corresponding relationship between each component of the reward and one of the two objectives. Then, we propose a new trace-based experience replay scheme to modify sample efficiency and reduce replay buffer bias, resulting in a modified multi-objective reinforcement learning algorithm. The experiment results validate that the proposed algorithm can obtain better adaptability to dynamic preferences and a more favorable balance between objectives compared with several algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
复杂的小鸭子完成签到,获得积分10
刚刚
天天快乐应助晴朗采纳,获得10
刚刚
狮子座发布了新的文献求助10
刚刚
TTUTT完成签到 ,获得积分10
1秒前
自觉从筠发布了新的文献求助10
2秒前
Alice完成签到,获得积分10
2秒前
情怀应助胡萝卜饼干采纳,获得10
2秒前
wnx001111发布了新的文献求助10
3秒前
wxyshare应助ABCD__采纳,获得10
3秒前
liz发布了新的文献求助20
3秒前
HH1202完成签到,获得积分10
4秒前
英俊安蕾完成签到,获得积分10
4秒前
valere完成签到 ,获得积分10
4秒前
4秒前
DF完成签到,获得积分10
4秒前
小小康康完成签到,获得积分10
4秒前
华仔应助123采纳,获得10
5秒前
JamesPei应助柳絮吹雪采纳,获得10
5秒前
5秒前
科研通AI6应助桥木有舟采纳,获得10
5秒前
沐浴清风发布了新的文献求助10
6秒前
言寺发布了新的文献求助30
6秒前
doddy完成签到,获得积分20
7秒前
bkagyin应助lll采纳,获得10
8秒前
8秒前
雷媛完成签到,获得积分10
8秒前
zt完成签到,获得积分20
9秒前
小艾完成签到,获得积分10
9秒前
LIUC完成签到 ,获得积分20
9秒前
科研通AI6应助0227Y采纳,获得10
10秒前
子桑完成签到,获得积分10
10秒前
晴朗完成签到,获得积分10
11秒前
11秒前
P16发布了新的文献求助10
11秒前
斯文如娆发布了新的文献求助10
11秒前
11秒前
12秒前
刘富贵发布了新的文献求助10
12秒前
Lysine发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5013461
求助须知:如何正确求助?哪些是违规求助? 4254548
关于积分的说明 13258498
捐赠科研通 4057614
什么是DOI,文献DOI怎么找? 2219343
邀请新用户注册赠送积分活动 1228859
关于科研通互助平台的介绍 1151416