Energy-Efficient Trajectory Optimization with Wireless Charging in UAV-Assisted MEC Based on Multi-Objective Reinforcement Learning

强化学习 计算机科学 弹道 无线 轨迹优化 能量(信号处理) 实时计算 人工智能 电信 统计 物理 数学 天文
作者
Fuhong Song,Mingsen Deng,Huanlai Xing,Yanping Liu,Fei Ye,Zhiwen Xiao
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:: 1-18 被引量:7
标识
DOI:10.1109/tmc.2024.3384405
摘要

This paper investigates the problem of energy-efficient trajectory optimization with wireless charging (ETWC) in an unmanned aerial vehicle (UAV)-assisted mobile edge computing system. A UAV is dispatched to collect computation tasks from specific ground smart devices (GSDs) within its coverage while transmitting energy to the other GSDs. In addition, a high-altitude platform with a laser beam is deployed in the stratosphere to charge the UAV, so as to maintain its flight mission. The ETWC problem is characterized by multi-objective optimization, aiming to maximize both the energy efficiency of the UAV and the number of tasks collected via optimizing the UAV's flight trajectories. The conflict between the two objectives in the problem makes it quite challenging. Recently, some single-objective reinforcement learning (SORL) algorithms have been introduced to address the aforementioned problem. Nevertheless, these SORLs adopt linear scalarization to define the user utility, thus ignoring the conflict between objectives. Furthermore, in dynamic MEC scenarios, the relative importance assigned to each objective may vary over time, posing significant challenges for conventional SORLs. To solve the challenge, we first build a multi-objective Markov decision process that has a vectorial reward mechanism. There is a corresponding relationship between each component of the reward and one of the two objectives. Then, we propose a new trace-based experience replay scheme to modify sample efficiency and reduce replay buffer bias, resulting in a modified multi-objective reinforcement learning algorithm. The experiment results validate that the proposed algorithm can obtain better adaptability to dynamic preferences and a more favorable balance between objectives compared with several algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yeyuntian完成签到 ,获得积分10
刚刚
zhouyunan完成签到,获得积分10
刚刚
1秒前
2秒前
3秒前
cyan发布了新的文献求助10
4秒前
啦啦啦完成签到,获得积分10
4秒前
4秒前
老实向雁完成签到,获得积分10
4秒前
5秒前
樱花恋发布了新的文献求助10
6秒前
7秒前
U9A发布了新的文献求助10
8秒前
英姑应助慈祥的爆米花采纳,获得10
8秒前
8秒前
8秒前
康轲完成签到,获得积分10
9秒前
9秒前
小蘑菇应助丘山采纳,获得10
9秒前
10秒前
老实的以柳完成签到 ,获得积分10
11秒前
辛勤的双雨完成签到,获得积分10
11秒前
duhdhd发布了新的文献求助10
11秒前
cyan完成签到,获得积分10
11秒前
情怀应助AaronDP采纳,获得50
12秒前
丘佳焜发布了新的文献求助10
13秒前
123关注了科研通微信公众号
14秒前
15秒前
我先睡了应助MRQ采纳,获得10
15秒前
soso发布了新的文献求助10
15秒前
派派完成签到,获得积分10
17秒前
小马甲应助罗晓倩采纳,获得10
19秒前
今后应助冷傲的夕阳采纳,获得10
19秒前
Hello应助派派采纳,获得10
23秒前
23秒前
小敏哼应助xueshu小裁缝采纳,获得10
24秒前
阿白完成签到,获得积分10
24秒前
ZAPAR发布了新的文献求助10
24秒前
丘佳焜完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993587
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265206
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712