Energy-Efficient Trajectory Optimization with Wireless Charging in UAV-Assisted MEC Based on Multi-Objective Reinforcement Learning

强化学习 计算机科学 弹道 无线 轨迹优化 能量(信号处理) 实时计算 人工智能 电信 天文 数学 统计 物理
作者
Fuhong Song,Mingsen Deng,Huanlai Xing,Yanping Liu,Fei Ye,Zhiwen Xiao
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:7
标识
DOI:10.1109/tmc.2024.3384405
摘要

This paper investigates the problem of energy-efficient trajectory optimization with wireless charging (ETWC) in an unmanned aerial vehicle (UAV)-assisted mobile edge computing system. A UAV is dispatched to collect computation tasks from specific ground smart devices (GSDs) within its coverage while transmitting energy to the other GSDs. In addition, a high-altitude platform with a laser beam is deployed in the stratosphere to charge the UAV, so as to maintain its flight mission. The ETWC problem is characterized by multi-objective optimization, aiming to maximize both the energy efficiency of the UAV and the number of tasks collected via optimizing the UAV's flight trajectories. The conflict between the two objectives in the problem makes it quite challenging. Recently, some single-objective reinforcement learning (SORL) algorithms have been introduced to address the aforementioned problem. Nevertheless, these SORLs adopt linear scalarization to define the user utility, thus ignoring the conflict between objectives. Furthermore, in dynamic MEC scenarios, the relative importance assigned to each objective may vary over time, posing significant challenges for conventional SORLs. To solve the challenge, we first build a multi-objective Markov decision process that has a vectorial reward mechanism. There is a corresponding relationship between each component of the reward and one of the two objectives. Then, we propose a new trace-based experience replay scheme to modify sample efficiency and reduce replay buffer bias, resulting in a modified multi-objective reinforcement learning algorithm. The experiment results validate that the proposed algorithm can obtain better adaptability to dynamic preferences and a more favorable balance between objectives compared with several algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kll发布了新的文献求助10
刚刚
Karma发布了新的文献求助10
1秒前
1秒前
莫之白发布了新的文献求助10
1秒前
李健的小迷弟应助SQ采纳,获得30
1秒前
Rourou完成签到,获得积分10
2秒前
天天快乐应助李昂岚采纳,获得10
2秒前
3秒前
4秒前
Carsen完成签到,获得积分10
4秒前
犯困完成签到,获得积分10
5秒前
李星翰完成签到,获得积分10
5秒前
5秒前
雨过无尘完成签到,获得积分10
6秒前
SciGPT应助图图采纳,获得10
7秒前
7秒前
gzl发布了新的文献求助10
7秒前
8秒前
zzz完成签到,获得积分10
8秒前
莫之白完成签到,获得积分10
8秒前
醉生梦死完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
李星翰发布了新的文献求助10
10秒前
123发布了新的文献求助10
10秒前
素颜完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
独特的绮山完成签到,获得积分20
12秒前
12秒前
12秒前
helinahs完成签到 ,获得积分10
12秒前
Marciu33发布了新的文献求助30
12秒前
无奈曼云发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761723
求助须知:如何正确求助?哪些是违规求助? 5531466
关于积分的说明 15400456
捐赠科研通 4897978
什么是DOI,文献DOI怎么找? 2634601
邀请新用户注册赠送积分活动 1582773
关于科研通互助平台的介绍 1538027