Energy-Efficient Trajectory Optimization with Wireless Charging in UAV-Assisted MEC Based on Multi-Objective Reinforcement Learning

强化学习 计算机科学 弹道 无线 轨迹优化 能量(信号处理) 实时计算 人工智能 电信 统计 物理 数学 天文
作者
Fuhong Song,Mingsen Deng,Huanlai Xing,Yanping Liu,Fei Ye,Zhiwen Xiao
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:7
标识
DOI:10.1109/tmc.2024.3384405
摘要

This paper investigates the problem of energy-efficient trajectory optimization with wireless charging (ETWC) in an unmanned aerial vehicle (UAV)-assisted mobile edge computing system. A UAV is dispatched to collect computation tasks from specific ground smart devices (GSDs) within its coverage while transmitting energy to the other GSDs. In addition, a high-altitude platform with a laser beam is deployed in the stratosphere to charge the UAV, so as to maintain its flight mission. The ETWC problem is characterized by multi-objective optimization, aiming to maximize both the energy efficiency of the UAV and the number of tasks collected via optimizing the UAV's flight trajectories. The conflict between the two objectives in the problem makes it quite challenging. Recently, some single-objective reinforcement learning (SORL) algorithms have been introduced to address the aforementioned problem. Nevertheless, these SORLs adopt linear scalarization to define the user utility, thus ignoring the conflict between objectives. Furthermore, in dynamic MEC scenarios, the relative importance assigned to each objective may vary over time, posing significant challenges for conventional SORLs. To solve the challenge, we first build a multi-objective Markov decision process that has a vectorial reward mechanism. There is a corresponding relationship between each component of the reward and one of the two objectives. Then, we propose a new trace-based experience replay scheme to modify sample efficiency and reduce replay buffer bias, resulting in a modified multi-objective reinforcement learning algorithm. The experiment results validate that the proposed algorithm can obtain better adaptability to dynamic preferences and a more favorable balance between objectives compared with several algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaojiahuo发布了新的文献求助10
刚刚
wxxz发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
包容春天发布了新的文献求助10
1秒前
2秒前
ding应助神勇绮烟采纳,获得10
2秒前
AyraN完成签到,获得积分10
2秒前
哈哈哈发布了新的文献求助10
2秒前
2秒前
hhh完成签到,获得积分10
2秒前
Zzz发布了新的文献求助20
3秒前
gudujian870928完成签到,获得积分10
3秒前
3秒前
香蕉觅云应助ira采纳,获得10
3秒前
一念之间发布了新的文献求助10
3秒前
君叁叁发布了新的文献求助10
4秒前
Akun发布了新的文献求助20
4秒前
4秒前
4秒前
123lura完成签到,获得积分10
4秒前
所所应助科研人采纳,获得10
5秒前
Ava应助lily采纳,获得10
5秒前
天涯过客完成签到,获得积分10
5秒前
阿松大发布了新的文献求助10
5秒前
情怀应助张锐斌采纳,获得10
6秒前
6秒前
正直海之完成签到,获得积分10
6秒前
FashionBoy应助c14在读文献采纳,获得10
6秒前
领导范儿应助LXH采纳,获得10
7秒前
totoro完成签到,获得积分10
7秒前
赘婿应助糊涂的砖头采纳,获得10
7秒前
ZMZ完成签到,获得积分10
7秒前
一念之间完成签到,获得积分10
8秒前
影zi发布了新的文献求助10
8秒前
Jaden发布了新的文献求助10
8秒前
伯仲之间发布了新的文献求助10
8秒前
8秒前
斯文败类应助tinatian270采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017