亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Energy-Efficient Trajectory Optimization with Wireless Charging in UAV-Assisted MEC Based on Multi-Objective Reinforcement Learning

强化学习 计算机科学 弹道 无线 轨迹优化 能量(信号处理) 实时计算 人工智能 电信 天文 数学 统计 物理
作者
Fuhong Song,Mingsen Deng,Huanlai Xing,Yanping Liu,Fei Ye,Zhiwen Xiao
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:7
标识
DOI:10.1109/tmc.2024.3384405
摘要

This paper investigates the problem of energy-efficient trajectory optimization with wireless charging (ETWC) in an unmanned aerial vehicle (UAV)-assisted mobile edge computing system. A UAV is dispatched to collect computation tasks from specific ground smart devices (GSDs) within its coverage while transmitting energy to the other GSDs. In addition, a high-altitude platform with a laser beam is deployed in the stratosphere to charge the UAV, so as to maintain its flight mission. The ETWC problem is characterized by multi-objective optimization, aiming to maximize both the energy efficiency of the UAV and the number of tasks collected via optimizing the UAV's flight trajectories. The conflict between the two objectives in the problem makes it quite challenging. Recently, some single-objective reinforcement learning (SORL) algorithms have been introduced to address the aforementioned problem. Nevertheless, these SORLs adopt linear scalarization to define the user utility, thus ignoring the conflict between objectives. Furthermore, in dynamic MEC scenarios, the relative importance assigned to each objective may vary over time, posing significant challenges for conventional SORLs. To solve the challenge, we first build a multi-objective Markov decision process that has a vectorial reward mechanism. There is a corresponding relationship between each component of the reward and one of the two objectives. Then, we propose a new trace-based experience replay scheme to modify sample efficiency and reduce replay buffer bias, resulting in a modified multi-objective reinforcement learning algorithm. The experiment results validate that the proposed algorithm can obtain better adaptability to dynamic preferences and a more favorable balance between objectives compared with several algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助璐璐姐最牛逼采纳,获得10
4秒前
5秒前
热爱科研的小孩完成签到,获得积分20
5秒前
7秒前
yuanyuan发布了新的文献求助10
8秒前
wu发布了新的文献求助10
9秒前
10秒前
shy完成签到,获得积分10
10秒前
10秒前
YifanWang完成签到,获得积分0
12秒前
ray发布了新的文献求助10
14秒前
zz发布了新的文献求助30
15秒前
zr237618发布了新的文献求助10
15秒前
英姑应助ray采纳,获得10
19秒前
今后应助yuanyuan采纳,获得10
22秒前
ramsey33完成签到 ,获得积分10
25秒前
27秒前
独特的元霜完成签到,获得积分10
29秒前
Criminology34举报kiki求助涉嫌违规
46秒前
我是老大应助白奕采纳,获得10
47秒前
丘比特应助健忘的板凳采纳,获得10
50秒前
Zhr完成签到 ,获得积分10
53秒前
55秒前
56秒前
58秒前
wondor1111发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI6应助凶狠的秀发采纳,获得10
1分钟前
yuanyuan发布了新的文献求助10
1分钟前
大个应助yuanyuan采纳,获得10
1分钟前
old幽露露完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
LIFE2020完成签到 ,获得积分10
1分钟前
level完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助殷楷霖采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599674
求助须知:如何正确求助?哪些是违规求助? 4685382
关于积分的说明 14838420
捐赠科研通 4669851
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505513
关于科研通互助平台的介绍 1470898