Energy-Efficient Trajectory Optimization with Wireless Charging in UAV-Assisted MEC Based on Multi-Objective Reinforcement Learning

强化学习 计算机科学 弹道 无线 轨迹优化 能量(信号处理) 实时计算 人工智能 电信 天文 数学 统计 物理
作者
Fuhong Song,Mingsen Deng,Huanlai Xing,Yanping Liu,Fei Ye,Zhiwen Xiao
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:7
标识
DOI:10.1109/tmc.2024.3384405
摘要

This paper investigates the problem of energy-efficient trajectory optimization with wireless charging (ETWC) in an unmanned aerial vehicle (UAV)-assisted mobile edge computing system. A UAV is dispatched to collect computation tasks from specific ground smart devices (GSDs) within its coverage while transmitting energy to the other GSDs. In addition, a high-altitude platform with a laser beam is deployed in the stratosphere to charge the UAV, so as to maintain its flight mission. The ETWC problem is characterized by multi-objective optimization, aiming to maximize both the energy efficiency of the UAV and the number of tasks collected via optimizing the UAV's flight trajectories. The conflict between the two objectives in the problem makes it quite challenging. Recently, some single-objective reinforcement learning (SORL) algorithms have been introduced to address the aforementioned problem. Nevertheless, these SORLs adopt linear scalarization to define the user utility, thus ignoring the conflict between objectives. Furthermore, in dynamic MEC scenarios, the relative importance assigned to each objective may vary over time, posing significant challenges for conventional SORLs. To solve the challenge, we first build a multi-objective Markov decision process that has a vectorial reward mechanism. There is a corresponding relationship between each component of the reward and one of the two objectives. Then, we propose a new trace-based experience replay scheme to modify sample efficiency and reduce replay buffer bias, resulting in a modified multi-objective reinforcement learning algorithm. The experiment results validate that the proposed algorithm can obtain better adaptability to dynamic preferences and a more favorable balance between objectives compared with several algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
飘逸薯片关注了科研通微信公众号
2秒前
爆米花应助六方金刚石采纳,获得10
2秒前
李爱国应助静花水月采纳,获得10
2秒前
思源应助成就的涵菡采纳,获得10
3秒前
kyhzxy发布了新的文献求助10
3秒前
大个应助ATREE采纳,获得10
3秒前
Halo_Dai发布了新的文献求助10
3秒前
CipherSage应助水123采纳,获得10
3秒前
3秒前
柱子发布了新的文献求助10
3秒前
4秒前
7秒前
8秒前
8秒前
玩命的觅珍完成签到,获得积分20
9秒前
10秒前
10秒前
请叫我过儿完成签到,获得积分10
12秒前
12秒前
清脆大米发布了新的文献求助10
12秒前
13秒前
粥粥粥发布了新的文献求助10
13秒前
13秒前
kyhzxy完成签到,获得积分10
14秒前
花深粥完成签到 ,获得积分10
15秒前
我是老大应助yaxuandeng采纳,获得10
15秒前
季生发布了新的文献求助30
18秒前
水何澹澹完成签到,获得积分0
18秒前
18秒前
wesley完成签到 ,获得积分0
18秒前
19秒前
章鱼发布了新的文献求助10
19秒前
lyp发布了新的文献求助30
19秒前
20秒前
jianjiao完成签到,获得积分10
20秒前
20秒前
机灵语雪完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601396
求助须知:如何正确求助?哪些是违规求助? 4686922
关于积分的说明 14846724
捐赠科研通 4680979
什么是DOI,文献DOI怎么找? 2539359
邀请新用户注册赠送积分活动 1506257
关于科研通互助平台的介绍 1471293