清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MLP-based multimodal tomato detection in complex scenarios: Insights from task-specific analysis of feature fusion architectures

RGB颜色模型 人工智能 特征(语言学) 计算机科学 编码器 卷积神经网络 深度学习 模式识别(心理学) 特征提取 计算机视觉 操作系统 哲学 语言学
作者
Wenjun Chen,Yuan Rao,Fengyi Wang,Yanwen Zhang,Tan Wang,Xiu Jin,Wenhui Hou,Zhaohui Jiang,Zhang Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:221: 108951-108951 被引量:7
标识
DOI:10.1016/j.compag.2024.108951
摘要

Accurate and efficient tomato detection is essential for the practical deployment of robotic picking in practical agricultural applications, but it still remains significantly challenging to detect tomatoes in complex scenarios with fluctuating light, overlapping fruits, and occlusion from branches and leaves when solely using RGB images. The recent development of RGB-D sensors has brought one promising opportunity to adopt multimodal fusion for implementing high-quality fruit detection. However, the feasibility of the existing multimodal fusion and feature extraction architectures for lightweight tomato detection tasks, especially in complex agricultural scenarios, raises questions that need to be explored. As a remedy, we proposed a multimodal fusion encoder that leveraged depth and near-infrared modalities to assist RGB images in making full use of multimodal data. Moreover, the encoder contained a plug-and-play structure capable of being implemented as MLP-based (Multi-Layer Perceptron), ViT-based (Vision Transformer), or CNN-based (Convolutional Neural Networks) architectures. Furthermore, we developed a lightweight experimental detection framework based on YOLOv7-tiny by means of integrating the multimodal fusion encoder, and YOLO-DNA (Depth and Near-infrared Assisted) was put forward based on the MLP-based architecture after conducting comprehensive analysis of the aforementioned three architectures. In addition, a tomato multimodal dataset containing visible, depth, and near-infrared images was established. Experimental results demonstrated that YOLO-DNA achieved mAP0.5 of 98.13% and mAP0.5:0.95 of 74.0%, an average increase of 5.01% in mAP0.5 and 14.55% in mAP0.5:0.95 over mainstream lightweight detection models, with a detection speed of 37.12 FPS, meeting the demand of real-time tomato detection. This finding has the potential to advance research on fruit detection in the field of intelligent agricultural harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
9秒前
9秒前
14秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
啊呀麦克发布了新的文献求助10
27秒前
32秒前
无辜的发卡完成签到,获得积分10
35秒前
澜生完成签到 ,获得积分10
38秒前
wujiwuhui完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
39秒前
啊呀麦克发布了新的文献求助10
39秒前
42秒前
量子星尘发布了新的文献求助10
46秒前
量子星尘发布了新的文献求助10
54秒前
啊呀麦克发布了新的文献求助10
56秒前
四叶草完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
啊呀麦克发布了新的文献求助10
1分钟前
碗碗豆喵完成签到 ,获得积分10
1分钟前
1分钟前
坚强白凝发布了新的文献求助10
1分钟前
creep2020完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
1分钟前
Jasper应助坚强白凝采纳,获得10
1分钟前
颜陌完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI2S应助jlwang采纳,获得10
1分钟前
2分钟前
西山菩提完成签到,获得积分10
2分钟前
斯文的傲珊完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
英姑应助啊呀麦克采纳,获得10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666414
求助须知:如何正确求助?哪些是违规求助? 3225448
关于积分的说明 9763022
捐赠科研通 2935282
什么是DOI,文献DOI怎么找? 1607589
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188