作者
Uri Ladabaum,Ajitha Mannalithara,Yingjie Weng,Robert E. Schoen,Jason A. Dominitz,Manisha Desai,David A. Lieberman
摘要
Background & Aims Colorectal cancer (CRC) screening is highly effective but underused. Blood-based biomarkers (eg, liquid biopsy) could improve screening participation. Methods Using our established Markov model, screening every 3 years with a blood-based test that meets minimum Centers for Medicare & Medicaid Services' thresholds (CMSmin) (CRC sensitivity 74%, specificity 90%) was compared with established alternatives. Test attributes were varied in sensitivity analyses. Results CMSmin reduced CRC incidence by 40% and CRC mortality by 52% vs no screening. These reductions were less profound than the 68%–79% and 73%–81%, respectively, achieved with multi-target stool DNA (Cologuard; Exact Sciences) every 3 years, annual fecal immunochemical testing (FIT), or colonoscopy every 10 years. Assuming the same cost as multi-target stool DNA, CMSmin cost $28,500/quality-adjusted life-year gained vs no screening, but FIT, colonoscopy, and multi-target stool DNA were less costly and more effective. CMSmin would match FIT's clinical outcomes if it achieved 1.4- to 1.8-fold FIT's participation rate. Advanced precancerous lesion (APL) sensitivity was a key determinant of a test's effectiveness. A paradigm-changing blood-based test (sensitivity >90% for CRC and 80% for APL; 90% specificity; cost ≤$120–$140) would be cost-effective vs FIT at comparable participation. Conclusions CMSmin could contribute to CRC control by achieving screening in those who will not use established methods. Substituting blood-based testing for established effective CRC screening methods will require higher CRC and APL sensitivities that deliver programmatic benefits matching those of FIT. High APL sensitivity, which can result in CRC prevention, should be a top priority for screening test developers. APL detection should not be penalized by a definition of test specificity that focuses on CRC only. Colorectal cancer (CRC) screening is highly effective but underused. Blood-based biomarkers (eg, liquid biopsy) could improve screening participation. Using our established Markov model, screening every 3 years with a blood-based test that meets minimum Centers for Medicare & Medicaid Services' thresholds (CMSmin) (CRC sensitivity 74%, specificity 90%) was compared with established alternatives. Test attributes were varied in sensitivity analyses. CMSmin reduced CRC incidence by 40% and CRC mortality by 52% vs no screening. These reductions were less profound than the 68%–79% and 73%–81%, respectively, achieved with multi-target stool DNA (Cologuard; Exact Sciences) every 3 years, annual fecal immunochemical testing (FIT), or colonoscopy every 10 years. Assuming the same cost as multi-target stool DNA, CMSmin cost $28,500/quality-adjusted life-year gained vs no screening, but FIT, colonoscopy, and multi-target stool DNA were less costly and more effective. CMSmin would match FIT's clinical outcomes if it achieved 1.4- to 1.8-fold FIT's participation rate. Advanced precancerous lesion (APL) sensitivity was a key determinant of a test's effectiveness. A paradigm-changing blood-based test (sensitivity >90% for CRC and 80% for APL; 90% specificity; cost ≤$120–$140) would be cost-effective vs FIT at comparable participation. CMSmin could contribute to CRC control by achieving screening in those who will not use established methods. Substituting blood-based testing for established effective CRC screening methods will require higher CRC and APL sensitivities that deliver programmatic benefits matching those of FIT. High APL sensitivity, which can result in CRC prevention, should be a top priority for screening test developers. APL detection should not be penalized by a definition of test specificity that focuses on CRC only.