An explainable nature-inspired cyber attack detection system in software-defined IoT applications

计算机科学 物联网 计算机安全 软件 信息物理系统 数据科学 操作系统
作者
Chandan Kumar,Md. Sarfaraj Alam Ansari
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:250: 123853-123853
标识
DOI:10.1016/j.eswa.2024.123853
摘要

The integration of the Internet of Things with Software-Defined Networking offers a flexible approach to managing Software-Defined Internet of Things (SD-IoT) applications. However, this architecture is vulnerable to attacks, which may compromise the user's sensitive data. To mitigate this risk, an Intrusion Detection System (IDS) is employed. The IDS model is developed using Machine Learning (ML) algorithms. However, the effectiveness of the ML-based IDS model depends on the optimal number of features used during training. The conventional approach for selecting the optimum feature subset is through hit-and-trial methods, which is a limitation. Moreover, interpreting IDS predictions on malicious flow detection in SD-IoT applications is challenging. So, in this research study, an explainable, lightweight IDS model based on a nature-inspired algorithm is proposed. Lightweight IDS required minimal features selected using the proposed technique based on the Sheep Flock Optimisation Algorithm and Least Absolute Shrinkage Selection Operator (SFOA-LASSO). LASSO uses the α value to measure the cost function and eliminate the redundant features. Eliminating the traditional method, we used the SFOA to obtain the α value. Further, the selected minimal features are used to build an ML-based IDS model. The proposed IDS model is experimentally evaluated on the SD-IoT dataset, which attains high performance in terms of detection rate and accuracy. To understand the prediction made by the IDS, the Shapley values are calculated and plotted using summary and beeswarm plot. The proposed model also performs well when tested on the CIC-IoT-2023 dataset. The obtained results are compared with recent state-of-the-art studies to show the model's robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Jae完成签到 ,获得积分10
1秒前
2秒前
今后应助XXH采纳,获得10
3秒前
科研通AI2S应助lzj001983采纳,获得10
3秒前
ll完成签到,获得积分10
3秒前
李爱国应助炬火采纳,获得10
4秒前
清爽聋五发布了新的文献求助10
5秒前
你好啊发布了新的文献求助10
7秒前
qs完成签到,获得积分10
7秒前
饼子发布了新的文献求助10
7秒前
8秒前
火星上的半梦关注了科研通微信公众号
10秒前
11秒前
11秒前
12秒前
12秒前
XXH发布了新的文献求助10
14秒前
14秒前
小生完成签到,获得积分10
15秒前
17秒前
凛雪鸦发布了新的文献求助10
18秒前
18秒前
Ava应助科比布莱恩特三世采纳,获得10
18秒前
CipherSage应助你好啊采纳,获得10
19秒前
炬火完成签到,获得积分20
20秒前
易安完成签到,获得积分10
20秒前
收集快乐完成签到 ,获得积分10
20秒前
画画的baby完成签到 ,获得积分10
21秒前
XXH完成签到 ,获得积分10
22秒前
23秒前
炬火发布了新的文献求助10
23秒前
大bulingbulin完成签到,获得积分10
24秒前
zzz完成签到,获得积分10
24秒前
烟花应助霓虹熄世界清采纳,获得10
26秒前
lql完成签到,获得积分10
27秒前
华仔应助大bulingbulin采纳,获得10
27秒前
30秒前
凛雪鸦完成签到,获得积分10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023