李普希茨连续性
数学
凸函数
单调函数
收敛速度
正多边形
组合数学
上下界
趋同(经济学)
常量(计算机编程)
功能(生物学)
二次方程
凸优化
应用数学
离散数学
纯数学
数学分析
计算机科学
几何学
频道(广播)
经济
经济增长
计算机网络
进化生物学
生物
程序设计语言
作者
Daiki Morinaga,Kazuto Fukuchi,Jun Sakuma,Youhei Akimoto
标识
DOI:10.1109/tevc.2023.3266955
摘要
Evolution strategy (ES) is one of promising classes of algorithms for black-box continuous optimization. Despite its broad successes in applications, theoretical analysis on the speed of its convergence is limited on convex quadratic functions and their monotonic transformation. In this study, an upper bound and a lower bound of the rate of linear convergence of the (1+1)-ES on locally $L$-strongly convex functions with $U$-Lipschitz continuous gradient are derived as $\exp\left(-\Omega_{d\to\infty}\left(\frac{L}{d\cdot U}\right)\right)$ and $\exp\left(-\frac1d\right)$, respectively. Notably, any prior knowledge on the mathematical properties of the objective function such as Lipschitz constant is not given to the algorithm, whereas the existing analyses of derivative-free optimization algorithms require them.
科研通智能强力驱动
Strongly Powered by AbleSci AI