Bearing fault-induced feature enhancement via adaptive multi-band denoising model

Morlet小波 计算机科学 小波 带阻滤波器 时频表示法 滤波器(信号处理) 算法 人工智能 语音识别 声学 小波变换 低通滤波器 物理 时频分析 离散小波变换 计算机视觉
作者
Lijuan Zhao,Long Zhang,Hao Zhang,Yanqing Hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 075012-075012 被引量:3
标识
DOI:10.1088/1361-6501/acc753
摘要

Abstract To accurately extract the bearing fault-induced impulse features from the vibration signals corrupted by heavy noise and large-amplitude random impulses, an adaptive multi-band denoising model based on the Morlet wavelet filter and sparse representation is put forward. First, to locate the desired frequency band associated with fault components, the Morlet wavelet filter is employed to band-pass the signal from the perspective of the frequency-domain. Herein, an improved Protrugram-based index, termed as windowed envelope spectral kurtosis, is designed as the objective function to choose the optimal center frequency and the bandwidth of the Morlet wavelet filter. Furthermore, benefitting from the time-domain characteristics of the vibration signal, the in-band noise is eliminated by sparse representation. One of the critical parameters (resonance frequency) of the wavelet atom used in the sparse representation dictionary is directly taken as the center frequency of the Morlet wavelet filter, which makes full use of the information derived from the filter, and thus significantly improves the calculation efficiency. Finally, the recovery signal is demodulated by the Hilbert transform to extract the fault characteristic frequency. The effectiveness and superiority of the proposed method are demonstrated through a complete analysis of the simulated, experimental, and engineering signals, as well as a comparison with such prevalent methods as Kurtogram, individual sparse representation, and Morlet wavelet filter combined with the maximum correlation kurtosis deconvolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LGuy发布了新的文献求助10
刚刚
小小铱完成签到,获得积分10
1秒前
2秒前
2秒前
热切菩萨应助威武大将军采纳,获得10
2秒前
凌乱山楂头完成签到,获得积分10
3秒前
希望天下0贩的0应助hui采纳,获得10
3秒前
小马甲应助aco采纳,获得10
4秒前
4秒前
tmxx发布了新的文献求助10
4秒前
Sam完成签到,获得积分10
5秒前
6秒前
6秒前
高兴荔枝发布了新的文献求助10
6秒前
LRRAM_809发布了新的文献求助10
6秒前
路飞发布了新的文献求助10
6秒前
7秒前
火火完成签到,获得积分10
7秒前
7秒前
雪茶发布了新的文献求助10
9秒前
hujin发布了新的文献求助10
9秒前
10秒前
谷jm完成签到,获得积分10
10秒前
付佳佳发布了新的文献求助10
11秒前
wo完成签到,获得积分10
12秒前
yanan完成签到,获得积分10
12秒前
cui完成签到 ,获得积分10
13秒前
14秒前
长野迪完成签到 ,获得积分10
15秒前
酷酷冰之发布了新的文献求助10
15秒前
香蕉觅云应助LeLeWen采纳,获得10
15秒前
acd发布了新的文献求助10
15秒前
三七四五完成签到,获得积分10
16秒前
开拖拉机的医学僧完成签到 ,获得积分10
17秒前
xiaohuhuan完成签到,获得积分10
19秒前
19秒前
19秒前
bai完成签到,获得积分10
20秒前
20秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465739
求助须知:如何正确求助?哪些是违规求助? 3058739
关于积分的说明 9063148
捐赠科研通 2749178
什么是DOI,文献DOI怎么找? 1508375
科研通“疑难数据库(出版商)”最低求助积分说明 696885
邀请新用户注册赠送积分活动 696579