Self-Supervised Locality Preserving Low-Pass Graph Convolutional Embedding for Large-Scale Hyperspectral Image Clustering

高光谱成像 计算机科学 地点 人工智能 嵌入 聚类分析 模式识别(心理学) 降维 相关聚类 图形 卷积神经网络 预处理器 理论计算机科学 哲学 语言学
作者
Yao Ding,Zhili Zhang,Xiaofeng Zhao,Yaoming Cai,Siye Li,Biao Deng,Weiwei Cai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:66
标识
DOI:10.1109/tgrs.2022.3198842
摘要

Due to prior knowledge deficiency, large spectral variability, and high dimension of hyperspectral image (HSI), HSI clustering is extremally a fundamental but challenging task. Deep clustering methods have achieved remarkable success and have attracted increasing attention in unsupervised HSI classification (HSIC). However, the poor robustness, adaptability, and feature presentation limit their practical applications to complex large-scale HSI datasets. Thus, this article introduces a novel self-supervised locality preserving low-pass graph convolutional embedding method (L2GCC) for large-scale hyperspectral image clustering. Specifically, a spectral–spatial transformation HSI preprocessing mechanism is introduced to learn superpixel-level spectral–spatial features from HSI and reduce the number of graph nodes for subsequent network processing. In addition, locality preserving low-pass graph convolutional embedding autoencoder is proposed, in which the low-pass graph convolution and layerwise graph attention are designed to extract the smoother features and preserve layerwise locality features, respectively. Finally, we develop a self-training strategy, in which a self-training clustering objective employs soft labels to supervise the clustering process and obtain appropriate hidden representations for node clustering. L2GCC is an end-to-end training network, which is jointly optimized by graph reconstruction loss and self-training clustering loss. On Indian Pines, Salinas, and University of Houston 2013 datasets, the clustering accuracy overall accuracies (OAs) of the proposed L2GCC are 73.51%, 83.15%, and 64.12%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助勤劳亦瑶采纳,获得10
1秒前
杨仔完成签到,获得积分20
1秒前
1秒前
paper快来发布了新的文献求助10
2秒前
11发布了新的文献求助10
2秒前
橙子fy16_完成签到,获得积分20
3秒前
3秒前
3秒前
baolong完成签到,获得积分10
4秒前
愤怒的紫发布了新的文献求助10
5秒前
叮咚完成签到,获得积分10
5秒前
cmq完成签到 ,获得积分10
6秒前
6秒前
catsfat发布了新的文献求助10
7秒前
Singularity应助11采纳,获得10
7秒前
8秒前
li1发布了新的文献求助10
9秒前
tomato完成签到,获得积分10
9秒前
优雅山柏完成签到,获得积分10
9秒前
9秒前
多发文章完成签到,获得积分10
10秒前
55完成签到,获得积分10
10秒前
月光取暖发布了新的文献求助30
15秒前
劳模发布了新的文献求助10
17秒前
江月年完成签到 ,获得积分10
17秒前
dingtc0609_发布了新的文献求助10
17秒前
汉堡包应助个性的饼干采纳,获得10
18秒前
18秒前
小鱼完成签到,获得积分10
18秒前
20秒前
20秒前
20秒前
行走完成签到,获得积分10
21秒前
英姑应助shawn采纳,获得10
22秒前
22秒前
23秒前
DU发布了新的文献求助10
23秒前
wwww完成签到,获得积分10
24秒前
打打应助小糯米采纳,获得10
25秒前
ly_lin关注了科研通微信公众号
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328