A robust ultrasonic characterization methodology for lithium-ion batteries on frequency-domain damping analysis

超声波传感器 锂(药物) 频域 表征(材料科学) 声学 离子 材料科学 计算机科学 物理 纳米技术 心理学 精神科 量子力学 计算机视觉
作者
Kangpei Meng,Xiaoping Chen,Wenhu Zhang,Wesley Chang,Jun Xu
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:547: 232003-232003 被引量:2
标识
DOI:10.1016/j.jpowsour.2022.232003
摘要

Recently, non-invasive ultrasonic-based detection has emerged as a powerful tool to estimate the state-of-charge (SOC) and state-of-health (SOH) of lithium-ion batteries with a promising accuracy and efficiency. However, the currently available non-invasive methodology is highly sensitive to experimental setups and conditions, leading to unpredictable and unstable results. To this end, from a more fundamental stress wave propagation perspective, we discover that the quantified change of ultrasonic damping can be an intrinsic physical quantity to correlate with the state-of-charge (SOC) of batteries. We employ time-harmonic waves with different frequencies to obtain the steady-state dynamic response of lithium-ion batteries at various SOCs and a quasi-periodic energy gap can be observed. A mesoscale physics-based model of lithium-ion batteries is established to explain the observed energy gap carrying the multiple reflections of ultrasonic waves within the multi-layered structure of the cell. Finally, the change of ultrasonic damping with SOC is quantified for fast and accurate SOC prediction based on the frequency-domain damping analysis. Results underpin a robust and accurate frequency-domain ultrasonic characterization methodology for batteries and highlight the promise of the fundamental understanding of wave propagation for advanced characterization of batteries. • Continuous waves are input as incident signals to conduct in-situ ultrasonic tests. • The wave dissipation mechanism through the pouch cell is revealed. • A meso-scale analytical model of the pouch cell is established. • An acoustic-based methodology for battery SOC estimation is proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩帽子发布了新的文献求助10
1秒前
2秒前
SciGPT应助semon采纳,获得10
3秒前
酷波er应助过时的寄松采纳,获得10
5秒前
贺豪完成签到 ,获得积分10
6秒前
hzh完成签到 ,获得积分10
6秒前
duoduo发布了新的文献求助10
6秒前
脑洞疼应助明亮无颜采纳,获得30
7秒前
7秒前
小盘子完成签到,获得积分10
9秒前
yingzaifeixiang完成签到 ,获得积分10
10秒前
张堡发布了新的文献求助30
11秒前
11秒前
Ji发布了新的文献求助10
11秒前
吴晓娟完成签到 ,获得积分10
14秒前
朴实初夏完成签到 ,获得积分10
14秒前
15秒前
16秒前
16秒前
聪慧亦玉发布了新的文献求助20
16秒前
wain发布了新的文献求助10
17秒前
17秒前
Owen应助娜行采纳,获得10
18秒前
霉小欧给mito的求助进行了留言
19秒前
投必快业必毕完成签到,获得积分10
19秒前
慌慌发布了新的文献求助10
21秒前
田格本发布了新的文献求助10
21秒前
无名老大应助支雨泽采纳,获得20
21秒前
21秒前
23秒前
科目三应助xjfsky采纳,获得10
24秒前
25秒前
lone623完成签到 ,获得积分10
26秒前
serayu123完成签到,获得积分10
26秒前
26秒前
yyy完成签到 ,获得积分10
27秒前
27秒前
28秒前
28秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357312
求助须知:如何正确求助?哪些是违规求助? 2980824
关于积分的说明 8696311
捐赠科研通 2662479
什么是DOI,文献DOI怎么找? 1457877
科研通“疑难数据库(出版商)”最低求助积分说明 674902
邀请新用户注册赠送积分活动 665938