A robust ultrasonic characterization methodology for lithium-ion batteries on frequency-domain damping analysis

超声波传感器 锂(药物) 频域 表征(材料科学) 声学 离子 材料科学 计算机科学 物理 纳米技术 心理学 计算机视觉 量子力学 精神科
作者
Kangpei Meng,Xiaoping Chen,Wenhu Zhang,Wesley Chang,Jun Xu
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:547: 232003-232003 被引量:2
标识
DOI:10.1016/j.jpowsour.2022.232003
摘要

Recently, non-invasive ultrasonic-based detection has emerged as a powerful tool to estimate the state-of-charge (SOC) and state-of-health (SOH) of lithium-ion batteries with a promising accuracy and efficiency. However, the currently available non-invasive methodology is highly sensitive to experimental setups and conditions, leading to unpredictable and unstable results. To this end, from a more fundamental stress wave propagation perspective, we discover that the quantified change of ultrasonic damping can be an intrinsic physical quantity to correlate with the state-of-charge (SOC) of batteries. We employ time-harmonic waves with different frequencies to obtain the steady-state dynamic response of lithium-ion batteries at various SOCs and a quasi-periodic energy gap can be observed. A mesoscale physics-based model of lithium-ion batteries is established to explain the observed energy gap carrying the multiple reflections of ultrasonic waves within the multi-layered structure of the cell. Finally, the change of ultrasonic damping with SOC is quantified for fast and accurate SOC prediction based on the frequency-domain damping analysis. Results underpin a robust and accurate frequency-domain ultrasonic characterization methodology for batteries and highlight the promise of the fundamental understanding of wave propagation for advanced characterization of batteries. • Continuous waves are input as incident signals to conduct in-situ ultrasonic tests. • The wave dissipation mechanism through the pouch cell is revealed. • A meso-scale analytical model of the pouch cell is established. • An acoustic-based methodology for battery SOC estimation is proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jiali完成签到,获得积分10
2秒前
4秒前
nancy_liang完成签到 ,获得积分10
4秒前
小米发布了新的文献求助10
4秒前
涛老三完成签到 ,获得积分10
4秒前
蓝色花生豆完成签到,获得积分10
5秒前
5秒前
小洒不洒应助0179采纳,获得10
6秒前
JOY完成签到,获得积分10
6秒前
7秒前
7秒前
纯真的半山关注了科研通微信公众号
7秒前
苏东方发布了新的文献求助10
8秒前
8秒前
wure10完成签到 ,获得积分10
10秒前
满君清发布了新的文献求助10
11秒前
ding应助June采纳,获得10
11秒前
11秒前
12秒前
12秒前
jiyang应助djyu采纳,获得10
14秒前
14秒前
River发布了新的文献求助10
14秒前
乐乐应助危志庭采纳,获得10
14秒前
14秒前
伶俐骁发布了新的文献求助10
15秒前
科目三应助天空之下采纳,获得10
15秒前
自由初夏完成签到,获得积分10
15秒前
犹豫芷巧发布了新的文献求助10
16秒前
福尔摩云完成签到,获得积分10
16秒前
yeban完成签到,获得积分20
17秒前
CarrieTung发布了新的文献求助10
17秒前
大模型应助catherine采纳,获得10
18秒前
张先生发布了新的文献求助20
18秒前
枕安发布了新的文献求助10
20秒前
犹豫芷巧完成签到,获得积分10
22秒前
22秒前
22秒前
舒适的淇完成签到,获得积分10
23秒前
24秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382591
求助须知:如何正确求助?哪些是违规求助? 4505701
关于积分的说明 14022478
捐赠科研通 4415103
什么是DOI,文献DOI怎么找? 2425372
邀请新用户注册赠送积分活动 1418138
关于科研通互助平台的介绍 1396207