Performance analysis of a 2D numerical model in estimating minimum fluidization velocity for fluidized beds

流态化 压力降 阻力 机械 流化床 粒子(生态学) 敲击 下降(电信) 阻力系数 CFD-DEM公司 材料科学 热力学 物理 地质学 工程类 计算流体力学 机械工程 流量(数学) 海洋学
作者
Nazmul Hossain,R. Metcalfe
出处
期刊:Particuology [Elsevier BV]
卷期号:77: 116-127 被引量:3
标识
DOI:10.1016/j.partic.2022.08.003
摘要

The minimum fluidization velocity of a fluid–solid particle fluidized bed is the primary focus of this paper. The computationally economic Eulerian Granular model has been used to analyze fluidization for both gas–solid particle and liquid-solid particle fluidized beds. The conventional approach of finding minimum fluidization velocity (umf) is either with a pressure drop across the particle bed or the change in bed height. However, these parameters are often unstable and cannot be used to generalize the degree of fluidization accurately. In this paper, the dominant factor of unstable pressure drop estimation in the 2D Two-Fluid Model (TFM) and a key non-dimensional Euler number has been investigated in determining minimum fluidization velocity for different quasi-2D fluidized beds for different bed sizes, particle sizes, and particle numbers. Averaging assumptions and limitations of these numerical models are discussed in detail for four different fluidized bed cases. A comparative study of the drag model shows little to no influence in unstable pressure drop estimation near fluidization velocity, and all drag models perform similarly. It is observed that particle-particle collision is not the dominant reason for unstable pressure drop near minimum fluidization. Instead, wall effects on the particle bed including frictional losses and wall-particle collision play a key role in unstable pressure drop calculation for the quasi-2D fluidized beds. Pressure drop characteristics alone do not suffice to obtain minimum fluidization velocity with 2D TFM using existing models. Thus, a different approach has been proposed to investigate minimum fluidization involving the Euler number, which has shown promising performance in determining minimum fluidization velocity and characterizing fluidization with 2D TFM. Results show consistency in Euler number characteristics for all different fluidized bed cases considered in this paper. This can revitalize computationally economic 2D Eulerian simulations, increase the range of possible applications, and provide guidance to the future development of computationally efficient and more accurate numerical models, and empirical correlations for minimum fluidization velocity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
日尧完成签到,获得积分10
1秒前
阔达的石头完成签到,获得积分10
1秒前
赘婿应助zylyl采纳,获得10
2秒前
云木完成签到 ,获得积分10
2秒前
华仔应助llt采纳,获得10
2秒前
风一样的风干肠完成签到,获得积分10
2秒前
yang923发布了新的文献求助10
2秒前
3秒前
SciGPT应助阳光遮住阴霾采纳,获得10
3秒前
4秒前
4秒前
怕黑冰烟完成签到 ,获得积分10
5秒前
自由凌波完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
黑暗与黎明完成签到 ,获得积分10
7秒前
7秒前
仇湘发布了新的文献求助10
8秒前
77发布了新的文献求助10
10秒前
Aura发布了新的文献求助10
11秒前
xinyue发布了新的文献求助20
11秒前
11秒前
quan完成签到,获得积分20
11秒前
FLZLC完成签到,获得积分10
11秒前
11秒前
sinlar完成签到,获得积分10
12秒前
ZL完成签到 ,获得积分10
12秒前
12秒前
65146发布了新的文献求助10
13秒前
春风不语完成签到 ,获得积分10
13秒前
丘比特应助苗条雁菱采纳,获得10
13秒前
贰鸟应助jiang采纳,获得10
14秒前
14秒前
ddsyg126完成签到,获得积分10
14秒前
费凝海完成签到,获得积分10
14秒前
15秒前
sass发布了新的文献求助10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4024340
求助须知:如何正确求助?哪些是违规求助? 3564210
关于积分的说明 11344678
捐赠科研通 3295369
什么是DOI,文献DOI怎么找? 1815104
邀请新用户注册赠送积分活动 889673
科研通“疑难数据库(出版商)”最低求助积分说明 813097