Multicomponent Adversarial Domain Adaptation: A General Framework

计算机科学 领域(数学分析) 人工智能 组分(热力学) 学习迁移 二部图 对抗制 域适应 领域工程 机器学习 图形 理论计算机科学 模式识别(心理学) 数学 分类器(UML) 程序设计语言 软件 基于构件的软件工程 软件系统 数学分析 物理 热力学
作者
Chang’an Yi,Haotian Chen,Yonghui Xu,Huanhuan Chen,Yong Liu,Haishu Tan,Yuguang Yan,Han Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 6824-6838 被引量:6
标识
DOI:10.1109/tnnls.2023.3270359
摘要

Domain adaptation (DA) aims to transfer knowledge from one source domain to another different but related target domain. The mainstream approach embeds adversarial learning into deep neural networks (DNNs) to either learn domain-invariant features to reduce the domain discrepancy or generate data to fill in the domain gap. However, these adversarial DA (ADA) approaches mainly consider the domain-level data distributions, while ignoring the differences among components contained in different domains. Therefore, components that are not related to the target domain are not filtered out. This can cause a negative transfer. In addition, it is difficult to make full use of the relevant components between the source and target domains to enhance DA. To address these limitations, we propose a general two-stage framework, named multicomponent ADA (MCADA). This framework trains the target model by first learning a domain-level model and then fine-tuning that model at the component-level. In particular, MCADA constructs a bipartite graph to find the most relevant component in the source domain for each component in the target domain. Since the nonrelevant components are filtered out for each target component, fine-tuning the domain-level model can enhance positive transfer. Extensive experiments on several real-world datasets demonstrate that MCADA has significant advantages over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
粱若之发布了新的文献求助10
刚刚
chen发布了新的文献求助20
刚刚
1秒前
科研通AI6应助学习采纳,获得10
1秒前
kaillera发布了新的文献求助10
1秒前
羊咩咩哒发布了新的文献求助10
1秒前
kk发布了新的文献求助10
1秒前
开逸一夏发布了新的文献求助10
2秒前
2秒前
天下第一帅完成签到,获得积分10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
momo发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
蓝天应助科研通管家采纳,获得10
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
发发完成签到,获得积分10
4秒前
Judy完成签到 ,获得积分10
4秒前
Liniong发布了新的文献求助10
5秒前
5秒前
wxy发布了新的文献求助10
5秒前
一天天完成签到,获得积分10
6秒前
鸣笛应助卖包的小行家采纳,获得10
6秒前
涛哥完成签到,获得积分10
6秒前
6秒前
科目三应助畅快山兰采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575863
求助须知:如何正确求助?哪些是违规求助? 3995272
关于积分的说明 12368236
捐赠科研通 3669085
什么是DOI,文献DOI怎么找? 2022092
邀请新用户注册赠送积分活动 1056109
科研通“疑难数据库(出版商)”最低求助积分说明 943424