已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Context-aware attention layers coupled with optimal transport domain adaptation and multimodal fusion methods for recognizing dementia from spontaneous speech

计算机科学 背景(考古学) 平滑的 适应(眼睛) 人工智能 语音识别 模式 机器学习 计算机视觉 古生物学 社会科学 物理 社会学 光学 生物
作者
Loukas Ilias,Dimitris Askounis
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2305.16406
摘要

Alzheimer's disease (AD) constitutes a complex neurocognitive disease and is the main cause of dementia. Although many studies have been proposed targeting at diagnosing dementia through spontaneous speech, there are still limitations. Existing state-of-the-art approaches, which propose multimodal methods, train separately language and acoustic models, employ majority-vote approaches, and concatenate the representations of the different modalities either at the input level, i.e., early fusion, or during training. Also, some of them employ self-attention layers, which calculate the dependencies between representations without considering the contextual information. In addition, no prior work has taken into consideration the model calibration. To address these limitations, we propose some new methods for detecting AD patients, which capture the intra- and cross-modal interactions. First, we convert the audio files into log-Mel spectrograms, their delta, and delta-delta and create in this way an image per audio file consisting of three channels. Next, we pass each transcript and image through BERT and DeiT models respectively. After that, context-based self-attention layers, self-attention layers with a gate model, and optimal transport domain adaptation methods are employed for capturing the intra- and inter-modal interactions. Finally, we exploit two methods for fusing the self and cross-attention features. For taking into account the model calibration, we apply label smoothing. We use both performance and calibration metrics. Experiments conducted on the ADReSS and ADReSSo Challenge datasets indicate the efficacy of our introduced approaches over existing research initiatives with our best performing model reaching Accuracy and F1-score up to 91.25% and 91.06% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武灵阳完成签到,获得积分10
刚刚
WENYY完成签到,获得积分10
1秒前
阿衍完成签到 ,获得积分10
6秒前
WENYY发布了新的文献求助30
6秒前
我是老大应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
m1nt完成签到,获得积分10
7秒前
有川洋一完成签到 ,获得积分10
8秒前
清爽老九应助keith采纳,获得10
10秒前
634301059完成签到 ,获得积分10
12秒前
四月完成签到 ,获得积分10
13秒前
左右逢我完成签到 ,获得积分10
16秒前
罗浩禹完成签到 ,获得积分10
17秒前
chu完成签到,获得积分10
17秒前
慕青应助鸿儒采纳,获得10
20秒前
cleff发布了新的文献求助10
21秒前
23秒前
pumpkin发布了新的文献求助10
24秒前
杳鸢应助糟糕的铁锤采纳,获得200
25秒前
纯牛奶完成签到,获得积分20
25秒前
ys1111xiao完成签到 ,获得积分10
26秒前
赵琪发布了新的文献求助10
26秒前
上官若男应助zrk采纳,获得10
27秒前
迷你的薯片完成签到,获得积分10
27秒前
28秒前
我是老大应助纯牛奶采纳,获得20
28秒前
28秒前
淡定的半莲完成签到 ,获得积分10
30秒前
31秒前
田様应助吴祥坤采纳,获得10
31秒前
31秒前
酷酷的王完成签到 ,获得积分10
31秒前
深情安青应助pumpkin采纳,获得10
34秒前
37秒前
yuaner发布了新的文献求助10
38秒前
ys1111完成签到 ,获得积分10
39秒前
zhl完成签到,获得积分10
39秒前
酷波er应助yuaner采纳,获得10
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946571
关于积分的说明 8530887
捐赠科研通 2622334
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650855