Supporting Prospective Pregnancy Trials via Modeling and Simulation: Lessons From the Past and Recommendations for the Future

医学 人口 临床试验 怀孕 重症监护医学 药物开发 家庭医学 药品 药理学 环境卫生 病理 遗传学 生物
作者
S. Y. Amy Cheung,Jeffrey S. Barrett
出处
期刊:The Journal of Clinical Pharmacology [Wiley]
卷期号:63 (S1) 被引量:1
标识
DOI:10.1002/jcph.2284
摘要

Abstract Despite the increasing awareness and guidance to support drug research and development in the pregnant population, there is still a high unmet medical need and off‐label use in the pregnant population for mainstream, acute, chronic, rare disease, and vaccination/prophylactic use. There are many obstacles to enrolling the pregnant population in a study, ranging from ethical considerations, the complexity of the pregnancy stages, postpartum, fetus–mother interaction, and drug transfer to breast milk during lactation and impacts on neonates. This review will outline the common challenges of incorporating physiological differences in the pregnant population and historical but noninformative practice in a past clinical trial in pregnant women that led to labeling difficulties. The recommendations of different modeling approaches, such as a population pharmacokinetic model, physiologically based pharmacokinetic modeling, model‐based meta‐analysis, and quantitative system pharmacology modeling, are presented with some examples. Finally, we outline the gaps in the medical need for the pregnant population by classifying various types of diseases and some considerations that exist to support the use of medicines in this area. Ideas on the potential framework to support clinical trials and collaboration examples are also presented that could also accelerate understanding of drug research and medicine/prophylactics/vaccines in the pregnant population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
chen发布了新的文献求助10
2秒前
chen发布了新的文献求助10
2秒前
2秒前
chen发布了新的文献求助10
2秒前
erdongsir完成签到,获得积分10
3秒前
chen发布了新的文献求助10
3秒前
chen发布了新的文献求助10
3秒前
4秒前
sxqt发布了新的文献求助10
5秒前
星辰大海应助南风采纳,获得10
5秒前
zhenxing完成签到,获得积分10
5秒前
青柠发布了新的文献求助10
7秒前
xz发布了新的文献求助10
7秒前
keyanxiaosong发布了新的文献求助10
7秒前
8秒前
8秒前
机灵火车完成签到,获得积分10
8秒前
SciGPT应助榆树畔采纳,获得10
8秒前
科研通AI2S应助NZH采纳,获得10
8秒前
11秒前
我要好好做实验完成签到,获得积分10
11秒前
纯真采蓝完成签到 ,获得积分10
11秒前
HR112应助李小米采纳,获得10
12秒前
满意的寒凝完成签到 ,获得积分10
13秒前
13秒前
14秒前
xiyinzhiwu发布了新的文献求助10
14秒前
14秒前
15秒前
科研通AI2S应助dablack采纳,获得10
15秒前
上官若男应助sxqt采纳,获得10
15秒前
16秒前
16秒前
淡淡寡妇发布了新的文献求助10
17秒前
Jasper应助激昂的秀发采纳,获得10
17秒前
乐乐应助猪儿虫采纳,获得10
18秒前
深情安青应助人间烟火采纳,获得10
18秒前
长风发布了新的文献求助10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300482
求助须知:如何正确求助?哪些是违规求助? 2935051
关于积分的说明 8471788
捐赠科研通 2608704
什么是DOI,文献DOI怎么找? 1424361
科研通“疑难数据库(出版商)”最低求助积分说明 662003
邀请新用户注册赠送积分活动 645653