亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ensemble machine learning reveals key structural and operational features governing ion selectivity of polyamide nanofiltration membranes

选择性 纳滤 二价 化学 离子 化学工程 有机化学 工程类 生物化学 催化作用
作者
Dan Lu,Xuanchao Ma,Jiancong Lu,Yu‐Kun Qian,Yifang Geng,Jing Wang,Zhikan Yao,Lijun Liang,Zhilin Sun,S. Liang,Lin Zhang
出处
期刊:Desalination [Elsevier BV]
卷期号:564: 116748-116748 被引量:25
标识
DOI:10.1016/j.desal.2023.116748
摘要

Diversified ion-selective separation applications have dramatically incentivized the exploitation and performance modulation of highly ion-selective nanofiltration (NF) membranes. However, the ion selectivity of NF membranes is synergistically governed by multi-scale factors of membrane structural parameters and operational parameters, with the intrinsic ion-selective mechanism still ambiguous. Herein, we proposed an ensemble machine learning (ML) method to decouple key factors affecting the ionic selectivity of polyamide NF membranes. Membrane structural parameters and operating parameters were typically extracted as input variables and linked to mono−/divalent ion selectivity by model training based on Random Forest and XGBoost algorithms. The feature importance assessment indicated the critical role of membrane structure parameters on ion selectivity, wherein pore radius dominated the mono−/divalent anionic selectivity while zeta potential for mono−/divalent cationic selectivity. Partial dependence analyses further depicted intensive insights regarding the influence of membrane structural parameters on ion selectivity. Moreover, stochastic dataset splitting measurements demonstrated the accurate predictive capability of the model simultaneously possessing excellent stability and reliability. We anticipated that the implementation of ensemble ML in explicating the intricate ion-selective mechanism created platforms for understanding the structure-membrane performance correlation and orientally manufacturing highly ion-selective NF membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大饼完成签到 ,获得积分10
10秒前
10秒前
LHNZMZMHK完成签到 ,获得积分10
13秒前
冷静的小甜瓜完成签到,获得积分10
13秒前
呆萌黑猫发布了新的文献求助10
17秒前
23秒前
七人七发布了新的文献求助10
27秒前
28秒前
yunxiao完成签到 ,获得积分10
30秒前
马艳霞发布了新的文献求助10
35秒前
43秒前
哭泣青烟完成签到 ,获得积分10
48秒前
花城完成签到 ,获得积分10
48秒前
53秒前
呆萌黑猫完成签到,获得积分10
55秒前
星辰大海应助科研通管家采纳,获得10
58秒前
共享精神应助科研通管家采纳,获得10
58秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
星辰大海应助科研通管家采纳,获得10
58秒前
我是老大应助天天有趣采纳,获得10
1分钟前
1分钟前
周诗琪发布了新的文献求助10
1分钟前
陀飞轮发布了新的文献求助10
1分钟前
oscar完成签到,获得积分10
1分钟前
香蕉觅云应助陀飞轮采纳,获得10
1分钟前
万崽秋秋糖完成签到 ,获得积分10
1分钟前
1分钟前
李健应助周诗琪采纳,获得10
1分钟前
1分钟前
hhhhh完成签到 ,获得积分10
1分钟前
focus完成签到 ,获得积分10
1分钟前
乐瑶完成签到 ,获得积分10
1分钟前
LAN完成签到,获得积分10
1分钟前
1分钟前
Andrewlabeth完成签到,获得积分10
1分钟前
哩哩完成签到,获得积分10
1分钟前
Rina完成签到,获得积分10
1分钟前
Rina发布了新的文献求助10
1分钟前
夜晚不可以没有星星完成签到,获得积分10
1分钟前
包容新蕾完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4909785
求助须知:如何正确求助?哪些是违规求助? 4185980
关于积分的说明 12998857
捐赠科研通 3953101
什么是DOI,文献DOI怎么找? 2167775
邀请新用户注册赠送积分活动 1186260
关于科研通互助平台的介绍 1093086