已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimization of Image Transmission in Cooperative Semantic Communication Networks

计算机科学 服务器 最优化问题 分布式计算 计算机网络 算法
作者
Wenjing Zhang,Yining Wang,Mingzhe Chen,Tao Luo,Dusit Niyato
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 861-873 被引量:8
标识
DOI:10.1109/twc.2023.3282906
摘要

In this paper, a semantic communication framework for image data transmission is developed. In the investigated framework, a set of servers cooperatively transmit image data to a set of users utilizing semantic communication techniques, which enable servers to transmit only the semantic information that accurately captures the meaning of images. To evaluate the performance of studied semantic communication system, a multimodal metric called image-to-graph semantic similarity (ISS) is proposed to measure the correlation between the extracted semantic information and the original image. To meet the ISS requirement of each user, each server must jointly determine the semantic information to be transmitted and the resource blocks (RBs) used for semantic information transmission. Due to the co-channel interference among users associated with different servers, each server must cooperate with other servers to find a globally optimal semantic oriented RB allocation. We formulate this problem as an optimization problem whose goal is to minimize the sum of the average transmission latency of each server while reaching the ISS requirement. To solve this problem, we propose a value decomposition based entropy-maximized multi-agent reinforcement learning (RL) algorithm. The proposed algorithm enables each server to coordinate with other servers in training stage and execute RB allocation in a distributed manner to approach to a globally optimal performance with less training iterations. Compared to traditional multi-agent RL algorithms, the proposed RL framework improves the exploration of valuable action of servers and the probability of finding a globally optimal RB allocation policy based on local observation of wireless and semantic communication environments. Simulation results show that the proposed algorithm can reduce the transmission delay by up to 16.1% and improve the convergence speed by up to 100% compared to the traditional multi-agent RL algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早早发布了新的文献求助10
1秒前
2秒前
2秒前
VDC应助Yeyeye采纳,获得30
4秒前
彭于晏应助朱冰蓝采纳,获得10
4秒前
4秒前
酷波er应助ahaa采纳,获得10
6秒前
za发布了新的文献求助10
7秒前
XMC2022发布了新的文献求助10
7秒前
10秒前
充电宝应助罗大壮采纳,获得10
10秒前
WWW完成签到 ,获得积分10
10秒前
多喝温水完成签到 ,获得积分10
10秒前
11秒前
wise111发布了新的文献求助10
11秒前
12秒前
李爱国应助za采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得30
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
正直乘云发布了新的文献求助10
14秒前
XMC2022完成签到,获得积分10
15秒前
15秒前
aloha01发布了新的文献求助10
15秒前
suy发布了新的文献求助10
16秒前
17秒前
19秒前
二二春完成签到,获得积分10
19秒前
万默完成签到 ,获得积分10
19秒前
Dr.Wei完成签到,获得积分10
21秒前
罗大壮发布了新的文献求助10
22秒前
蓝白完成签到,获得积分10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125917
求助须知:如何正确求助?哪些是违规求助? 4329582
关于积分的说明 13491436
捐赠科研通 4164515
什么是DOI,文献DOI怎么找? 2282992
邀请新用户注册赠送积分活动 1284044
关于科研通互助平台的介绍 1223448