Optimization of Image Transmission in Cooperative Semantic Communication Networks

计算机科学 服务器 最优化问题 分布式计算 计算机网络 算法
作者
Wenjing Zhang,Yining Wang,Mingzhe Chen,Tao Luo,Dusit Niyato
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 861-873 被引量:8
标识
DOI:10.1109/twc.2023.3282906
摘要

In this paper, a semantic communication framework for image data transmission is developed. In the investigated framework, a set of servers cooperatively transmit image data to a set of users utilizing semantic communication techniques, which enable servers to transmit only the semantic information that accurately captures the meaning of images. To evaluate the performance of studied semantic communication system, a multimodal metric called image-to-graph semantic similarity (ISS) is proposed to measure the correlation between the extracted semantic information and the original image. To meet the ISS requirement of each user, each server must jointly determine the semantic information to be transmitted and the resource blocks (RBs) used for semantic information transmission. Due to the co-channel interference among users associated with different servers, each server must cooperate with other servers to find a globally optimal semantic oriented RB allocation. We formulate this problem as an optimization problem whose goal is to minimize the sum of the average transmission latency of each server while reaching the ISS requirement. To solve this problem, we propose a value decomposition based entropy-maximized multi-agent reinforcement learning (RL) algorithm. The proposed algorithm enables each server to coordinate with other servers in training stage and execute RB allocation in a distributed manner to approach to a globally optimal performance with less training iterations. Compared to traditional multi-agent RL algorithms, the proposed RL framework improves the exploration of valuable action of servers and the probability of finding a globally optimal RB allocation policy based on local observation of wireless and semantic communication environments. Simulation results show that the proposed algorithm can reduce the transmission delay by up to 16.1% and improve the convergence speed by up to 100% compared to the traditional multi-agent RL algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助76采纳,获得10
刚刚
RUI完成签到 ,获得积分10
1秒前
123456发布了新的文献求助10
2秒前
爱笑半雪完成签到,获得积分10
3秒前
英勇的幻露完成签到,获得积分10
4秒前
yep完成签到,获得积分10
7秒前
生动的羽毛完成签到 ,获得积分10
7秒前
自由的梦露完成签到 ,获得积分10
7秒前
畅快的念烟完成签到,获得积分10
7秒前
追风少年完成签到 ,获得积分10
8秒前
9秒前
jychen85完成签到 ,获得积分10
11秒前
复杂的洋葱完成签到 ,获得积分10
12秒前
Lynn完成签到,获得积分10
12秒前
YY完成签到 ,获得积分10
12秒前
孤独蘑菇完成签到 ,获得积分10
12秒前
FJ完成签到,获得积分10
13秒前
OnionJJ完成签到,获得积分10
14秒前
轩辕寄风完成签到,获得积分10
14秒前
ao黛雷赫完成签到,获得积分10
15秒前
张小度ever完成签到 ,获得积分10
16秒前
蝃蝀完成签到,获得积分10
17秒前
滴答完成签到,获得积分10
20秒前
花花完成签到,获得积分10
22秒前
小星星完成签到 ,获得积分10
22秒前
多情以山完成签到 ,获得积分10
23秒前
66完成签到,获得积分10
23秒前
SciGPT应助落红禹03采纳,获得10
24秒前
牛马打工人完成签到 ,获得积分20
25秒前
科研小lese完成签到,获得积分10
25秒前
wing完成签到 ,获得积分10
25秒前
鱼0306完成签到,获得积分10
25秒前
金秋完成签到,获得积分0
27秒前
FashionBoy应助头头啊头头啊采纳,获得10
27秒前
miemie66完成签到,获得积分10
28秒前
kakaC完成签到 ,获得积分10
28秒前
萝卜猪完成签到,获得积分10
28秒前
skysleeper完成签到,获得积分10
29秒前
30秒前
yuze完成签到 ,获得积分10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798221
关于积分的说明 7827159
捐赠科研通 2454808
什么是DOI,文献DOI怎么找? 1306480
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565