Dynamic Spatial Focus for Efficient Compressed Video Action Recognition

计算机科学 光学(聚焦) 计算机视觉 人工智能 动作识别 模式识别(心理学) 计算机图形学(图像) 物理 光学 班级(哲学)
作者
Ziwei Zheng,Le Yang,Yulin Wang,Miao Zhang,Lijun He,Gao Huang,Fan Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 695-708 被引量:17
标识
DOI:10.1109/tcsvt.2023.3287201
摘要

Recent years have witnessed a growing interest in compressed video action recognition due to the rapid growth of online videos. It remarkably reduces the storage by replacing raw videos with sparsely sampled RGB frames and other compressed motion cues (motion vectors and residuals). However, existing compressed video action recognition methods face two main issues: First, the inefficiency caused by the usage of coarse-level information under full resolution, and second, the disturbing due to the noisy dynamics in motion vectors. To address the two issues, this paper proposes a dynamic spatial focus method for efficient compressed video action recognition (CoViFocus). Specifically, we first use a light-weighted two-stream architecture to localize the task-relevant patches for both the RGB frames and motion vectors. Then the selected patch pair will be processed by a high-capacity two-stream deep model for the final prediction. Such a patch selection strategy crops out the irrelevant motion noise in motion vectors, as well as reduces the spatial redundancy of the inputs, leading to the high efficiency of our method in the compressed domain. Moreover, we found that the motion vectors can help our method to address the possibly happened static-issue, which means that the focus patches get stuck at some regions related to static objects rather than target actions, which further improves our method. Extensive results on both the HMDB-51 and UCF-101 datasets demonstrate the effectiveness and efficiency of our method in compressed video action recognition tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
11发布了新的文献求助10
1秒前
星辰大海应助晴子采纳,获得10
2秒前
3秒前
小豆泥完成签到,获得积分10
3秒前
4秒前
4秒前
港岛妹妹发布了新的文献求助10
5秒前
5秒前
炙热雅琴发布了新的文献求助10
5秒前
冷静水池发布了新的文献求助10
5秒前
fxx发布了新的文献求助10
5秒前
林夕发布了新的文献求助10
5秒前
奋斗的龙鹊完成签到,获得积分10
6秒前
6秒前
星辰大海应助王大锤采纳,获得10
6秒前
7秒前
nczpf2010完成签到,获得积分10
8秒前
杨奇定发布了新的文献求助10
8秒前
8秒前
汉堡包应助柠檬小橘子采纳,获得10
8秒前
9秒前
无情飞雪发布了新的文献求助10
9秒前
argwew发布了新的文献求助10
11秒前
lmj完成签到,获得积分10
11秒前
yyyyyyyyjt完成签到,获得积分20
12秒前
Ava应助姬松茸夫人采纳,获得10
12秒前
云墨发布了新的文献求助10
12秒前
我就在这等待完成签到,获得积分10
13秒前
科研副本发布了新的文献求助10
13秒前
14秒前
yyyyyyyyjt发布了新的文献求助10
15秒前
jiujieweizi完成签到 ,获得积分10
15秒前
辛勤雨泽发布了新的文献求助10
15秒前
CodeCraft应助冷静水池采纳,获得10
15秒前
luyong完成签到 ,获得积分10
17秒前
19秒前
王大锤发布了新的文献求助10
19秒前
科研通AI5应助森气采纳,获得10
20秒前
孙淳完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560850
求助须知:如何正确求助?哪些是违规求助? 3134690
关于积分的说明 9408852
捐赠科研通 2834921
什么是DOI,文献DOI怎么找? 1558291
邀请新用户注册赠送积分活动 728047
科研通“疑难数据库(出版商)”最低求助积分说明 716678