已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Early prediction of ventilator-associated pneumonia with machine learning models: A systematic review and meta-analysis of prediction model performance✰

医学 机器学习 荟萃分析 预测建模 呼吸机相关性肺炎 重症监护医学 肺炎 内科学 计算机科学
作者
T. Frondelius,Irina Atkova,Jouko Miettunen,Jordi Rello,Gillian Vesty,Han Shi Jocelyn Chew,Miia Jansson
出处
期刊:European Journal of Internal Medicine [Elsevier]
被引量:12
标识
DOI:10.1016/j.ejim.2023.11.009
摘要

BackgroundMachine learning-based prediction models can catalog, classify, and correlate large amounts of multimodal data to aid clinicians at diagnostic, prognostic, and therapeutic levels. Early prediction of ventilator-associated pneumonia (VAP) may accelerate the diagnosis and guide preventive interventions. The performance of a variety of machine learning-based prediction models were analyzed among adults undergoing invasive mechanical ventilation.MethodsThis systematic review and meta-analysis was conducted in accordance with the Cochrane Collaboration. Machine learning-based prediction models were identified from a search of nine multi-disciplinary databases. Two authors independently selected and extracted data using predefined criteria and data extraction forms. The predictive performance, the interpretability, the technological readiness level, and the risk of bias of the included studies were evaluated.ResultsFinal analysis included 10 static prediction models using supervised learning. The pooled area under the receiver operating characteristics curve, sensitivity, and specificity for VAP were 0.88 (95 % CI 0.82–0.94, I2 98.4 %), 0.72 (95 % CI 0.45–0.98, I2 97.4 %) and 0.90 (95 % CI 0.85–0.94, I2 97.9 %), respectively. All included studies had either a high or unclear risk of bias without significant improvements in applicability. The care-related risk factors for the best performing models were the duration of mechanical ventilation, the length of ICU stay, blood transfusion, nutrition strategy, and the presence of antibiotics.ConclusionA variety of the prediction models, prediction intervals, and prediction windows were identified to facilitate timely diagnosis. In addition, care-related risk factors susceptible for preventive interventions were identified. In future, there is a need for dynamic machine learning models using time-depended predictors in conjunction with feature importance of the models to predict real-time risk of VAP and related outcomes to optimize bundled care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔法师完成签到,获得积分10
1秒前
DAKE发布了新的文献求助10
1秒前
2秒前
frap发布了新的文献求助10
2秒前
2秒前
CNSer发布了新的文献求助10
4秒前
NexusExplorer应助小北采纳,获得10
4秒前
科研美少女完成签到 ,获得积分10
4秒前
6秒前
小佛爱学护理学完成签到,获得积分10
6秒前
7秒前
蒋龙发布了新的文献求助10
7秒前
8秒前
8秒前
宇智波白哉完成签到 ,获得积分10
8秒前
8秒前
Youngman完成签到,获得积分10
9秒前
up关闭了up文献求助
10秒前
11秒前
赘婿应助小中采纳,获得10
12秒前
yiyi131发布了新的文献求助10
12秒前
隐形曼青应助星星采纳,获得10
13秒前
16秒前
lyc发布了新的文献求助10
16秒前
星辰大海应助Hana采纳,获得10
18秒前
19秒前
郁金香发布了新的文献求助10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
ding应助科研通管家采纳,获得10
20秒前
24秒前
晓晓来了发布了新的文献求助10
25秒前
冲塔亚德发布了新的文献求助10
25秒前
28秒前
wanci应助123采纳,获得10
29秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142265
求助须知:如何正确求助?哪些是违规求助? 2793200
关于积分的说明 7805849
捐赠科研通 2449486
什么是DOI,文献DOI怎么找? 1303333
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601291