FRCD: Feature Refine Change Detection Network for Remote Sensing Images

增采样 变更检测 计算机科学 特征(语言学) 卷积(计算机科学) 人工智能 特征提取 代表(政治) 模式识别(心理学) 编码(集合论) 图像(数学) 人工神经网络 哲学 语言学 集合(抽象数据类型) 政治 政治学 法学 程序设计语言
作者
Z.C. Wang,Zongxu Pan,Yuxin Hu,Bin Lei
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3303200
摘要

Change detection plays an important role in Earth surface analysis. Current change detection methods have achieved good performance in large flat areas, but change detection of detailed parts is still a great challenge, and the loss of detail causes many faults around the change boundaries and on small objects. By analyzing the feature map of the widely used U-Net architecture in existing methods, we ascribe the detail loss to the depletion of detailed features during the top-to-down delivery in the U-Net architecture. The Feature Refine Change Detection(FRCD) model is proposed in which the detection results are predicted directly from the multiscale features instead of the U-Net architecture. By direct prediction, the representation ability of details is enhanced, and thus the detection accuracy of boundaries and small objects improves. Moreover, the normal upsampling in direct prediction is replaced with the deformable upsampling, which delivers detailed information from the low-level to the high-level via the deformable convolution, allowing the results to further fit boundaries in the FRCD model. Experimental results on two datasets confirm the effectiveness of FRCD compared to state-of-the-art methods, and the change detection results of boundaries and small objects are improved significantly by the proposed method. Code will be available after the acceptance of the paper in https://github.com/ijnokml/cdfr.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lc发布了新的文献求助20
刚刚
刚刚
刚刚
yutian完成签到,获得积分10
1秒前
again完成签到,获得积分10
2秒前
2秒前
杨华启完成签到,获得积分10
2秒前
XYN1完成签到,获得积分10
2秒前
香蕉觅云应助精明人达采纳,获得10
3秒前
3秒前
nianxunxi完成签到,获得积分10
3秒前
MouLi完成签到,获得积分10
3秒前
221完成签到,获得积分10
3秒前
英姑应助杨19980625采纳,获得10
4秒前
paz_1010完成签到,获得积分10
4秒前
脑洞疼应助无颜猪采纳,获得10
4秒前
charry发布了新的文献求助10
4秒前
5秒前
5秒前
KARRY完成签到 ,获得积分20
5秒前
ZXD1989完成签到 ,获得积分10
5秒前
破伤疯完成签到,获得积分10
5秒前
5秒前
6秒前
靓丽幻梅发布了新的文献求助10
6秒前
6秒前
6秒前
wgl200212发布了新的文献求助10
6秒前
小闰土完成签到,获得积分10
6秒前
简默发布了新的文献求助10
7秒前
梓墨发布了新的文献求助30
7秒前
SciGPT应助健忘的醉蝶采纳,获得10
7秒前
7秒前
Oil发布了新的文献求助10
8秒前
8秒前
爆米花应助苏silence采纳,获得10
8秒前
温馨完成签到 ,获得积分0
8秒前
小小K发布了新的文献求助10
8秒前
123456678发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017