FRCD: Feature Refine Change Detection Network for Remote Sensing Images

增采样 变更检测 计算机科学 特征(语言学) 卷积(计算机科学) 人工智能 特征提取 代表(政治) 模式识别(心理学) 编码(集合论) 图像(数学) 人工神经网络 哲学 语言学 集合(抽象数据类型) 政治 政治学 法学 程序设计语言
作者
Z.C. Wang,Zongxu Pan,Yuxin Hu,Bin Lei
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3303200
摘要

Change detection plays an important role in Earth surface analysis. Current change detection methods have achieved good performance in large flat areas, but change detection of detailed parts is still a great challenge, and the loss of detail causes many faults around the change boundaries and on small objects. By analyzing the feature map of the widely used U-Net architecture in existing methods, we ascribe the detail loss to the depletion of detailed features during the top-to-down delivery in the U-Net architecture. The Feature Refine Change Detection(FRCD) model is proposed in which the detection results are predicted directly from the multiscale features instead of the U-Net architecture. By direct prediction, the representation ability of details is enhanced, and thus the detection accuracy of boundaries and small objects improves. Moreover, the normal upsampling in direct prediction is replaced with the deformable upsampling, which delivers detailed information from the low-level to the high-level via the deformable convolution, allowing the results to further fit boundaries in the FRCD model. Experimental results on two datasets confirm the effectiveness of FRCD compared to state-of-the-art methods, and the change detection results of boundaries and small objects are improved significantly by the proposed method. Code will be available after the acceptance of the paper in https://github.com/ijnokml/cdfr.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要减肥的魔镜完成签到 ,获得积分10
1秒前
1秒前
wanci应助dadada采纳,获得10
1秒前
CipherSage应助平淡的小刺猬采纳,获得10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
123完成签到,获得积分10
2秒前
3秒前
Bigweenine完成签到,获得积分10
3秒前
李健应助娲娃佤哇采纳,获得10
4秒前
Zx_1993应助从容艳血采纳,获得20
4秒前
黄婷完成签到,获得积分10
4秒前
张宇豪完成签到,获得积分10
5秒前
完美世界应助哈哈哈采纳,获得10
5秒前
5秒前
6秒前
6秒前
Owen应助jun采纳,获得10
7秒前
nan发布了新的文献求助10
7秒前
HearbaRtNDY完成签到,获得积分10
8秒前
深情安青应助ooox采纳,获得10
8秒前
8秒前
善学以致用应助柚子采纳,获得10
9秒前
大聪明完成签到,获得积分10
9秒前
华仔应助墨客采纳,获得10
9秒前
李健的小迷弟应助010-LYN采纳,获得10
9秒前
耶耶完成签到,获得积分10
10秒前
10秒前
charllar发布了新的文献求助10
10秒前
123发布了新的文献求助10
10秒前
无极微光应助灼灼采纳,获得20
10秒前
zll990102关注了科研通微信公众号
11秒前
大聪明发布了新的文献求助10
11秒前
12秒前
13秒前
小星星发布了新的文献求助20
13秒前
白阳完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531780
求助须知:如何正确求助?哪些是违规求助? 4620574
关于积分的说明 14573778
捐赠科研通 4560339
什么是DOI,文献DOI怎么找? 2498813
邀请新用户注册赠送积分活动 1478687
关于科研通互助平台的介绍 1450049