FRCD: Feature Refine Change Detection Network for Remote Sensing Images

增采样 变更检测 计算机科学 特征(语言学) 卷积(计算机科学) 人工智能 特征提取 代表(政治) 模式识别(心理学) 编码(集合论) 数据挖掘 遥感 图像(数学) 人工神经网络 地质学 哲学 语言学 集合(抽象数据类型) 政治 政治学 法学 程序设计语言
作者
Z.C. Wang,Zongxu Pan,Yuxin Hu,Bin Lei
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5
标识
DOI:10.1109/lgrs.2023.3303200
摘要

Change detection plays an important role in Earth surface analysis. Current change detection methods have achieved good performance in large flat areas, but change detection of detailed parts is still a great challenge, and the loss of detail causes many faults around the change boundaries and on small objects. By analyzing the feature map of the widely used U-Net architecture in existing methods, we ascribe the detail loss to the depletion of detailed features during the top-to-down delivery in the U-Net architecture. The Feature Refine Change Detection(FRCD) model is proposed in which the detection results are predicted directly from the multiscale features instead of the U-Net architecture. By direct prediction, the representation ability of details is enhanced, and thus the detection accuracy of boundaries and small objects improves. Moreover, the normal upsampling in direct prediction is replaced with the deformable upsampling, which delivers detailed information from the low-level to the high-level via the deformable convolution, allowing the results to further fit boundaries in the FRCD model. Experimental results on two datasets confirm the effectiveness of FRCD compared to state-of-the-art methods, and the change detection results of boundaries and small objects are improved significantly by the proposed method. Code will be available after the acceptance of the paper in https://github.com/ijnokml/cdfr.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nnn发布了新的文献求助10
1秒前
开心友儿发布了新的文献求助10
1秒前
3秒前
3秒前
萧一江完成签到,获得积分10
4秒前
YingjiaHu完成签到,获得积分10
5秒前
共享精神应助子默采纳,获得10
7秒前
小芳应助重要半兰采纳,获得10
7秒前
善良诗珊完成签到,获得积分10
8秒前
玥来玥好发布了新的文献求助10
8秒前
Lucas应助博定尚采纳,获得50
9秒前
华仔应助47采纳,获得10
10秒前
Lucas应助糊里糊涂采纳,获得10
11秒前
张志超发布了新的文献求助10
12秒前
yangican完成签到,获得积分10
12秒前
16秒前
17秒前
19秒前
19秒前
高兴的小完成签到,获得积分10
19秒前
20秒前
懒羊羊发布了新的文献求助10
20秒前
冷酷丹翠完成签到 ,获得积分10
21秒前
温暖天与应助重要半兰采纳,获得10
21秒前
泡芙完成签到,获得积分10
23秒前
靓丽访枫发布了新的文献求助10
24秒前
糊涂的寒蕾完成签到,获得积分10
24秒前
满意的芸完成签到 ,获得积分10
25秒前
小蘑菇应助Su73采纳,获得10
25秒前
Leo完成签到,获得积分10
25秒前
26秒前
田様应助欧阳采纳,获得10
27秒前
29秒前
47完成签到,获得积分10
29秒前
隐形曼青应助科研通管家采纳,获得10
30秒前
Hello应助奕初阳采纳,获得10
30秒前
彳亍1117应助科研通管家采纳,获得10
30秒前
完美世界应助科研通管家采纳,获得10
31秒前
李健应助玥来玥好采纳,获得10
31秒前
星辰大海应助科研通管家采纳,获得10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310243
求助须知:如何正确求助?哪些是违规求助? 2943212
关于积分的说明 8513174
捐赠科研通 2618448
什么是DOI,文献DOI怎么找? 1431076
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649542