FRCD: Feature Refine Change Detection Network for Remote Sensing Images

增采样 变更检测 计算机科学 特征(语言学) 卷积(计算机科学) 人工智能 特征提取 代表(政治) 模式识别(心理学) 编码(集合论) 图像(数学) 人工神经网络 哲学 语言学 集合(抽象数据类型) 政治 政治学 法学 程序设计语言
作者
Z.C. Wang,Zongxu Pan,Yuxin Hu,Bin Lei
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3303200
摘要

Change detection plays an important role in Earth surface analysis. Current change detection methods have achieved good performance in large flat areas, but change detection of detailed parts is still a great challenge, and the loss of detail causes many faults around the change boundaries and on small objects. By analyzing the feature map of the widely used U-Net architecture in existing methods, we ascribe the detail loss to the depletion of detailed features during the top-to-down delivery in the U-Net architecture. The Feature Refine Change Detection(FRCD) model is proposed in which the detection results are predicted directly from the multiscale features instead of the U-Net architecture. By direct prediction, the representation ability of details is enhanced, and thus the detection accuracy of boundaries and small objects improves. Moreover, the normal upsampling in direct prediction is replaced with the deformable upsampling, which delivers detailed information from the low-level to the high-level via the deformable convolution, allowing the results to further fit boundaries in the FRCD model. Experimental results on two datasets confirm the effectiveness of FRCD compared to state-of-the-art methods, and the change detection results of boundaries and small objects are improved significantly by the proposed method. Code will be available after the acceptance of the paper in https://github.com/ijnokml/cdfr.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然的岱周完成签到 ,获得积分10
1秒前
炙热的夜雪完成签到 ,获得积分10
2秒前
yyy发布了新的文献求助10
5秒前
6秒前
6秒前
今后应助雨安采纳,获得10
7秒前
7秒前
酷波er应助历史真相采纳,获得10
8秒前
王玉完成签到 ,获得积分10
8秒前
情怀应助失眠的耳机采纳,获得10
10秒前
乐乐应助panini采纳,获得10
10秒前
俊逸书琴发布了新的文献求助10
11秒前
aa121599发布了新的文献求助10
11秒前
12秒前
13秒前
稻草人发布了新的文献求助10
15秒前
15秒前
小牧鱼完成签到,获得积分10
15秒前
科研通AI6应助Hui_2023采纳,获得30
16秒前
16秒前
小马甲应助eleanor采纳,获得10
17秒前
18秒前
19秒前
善学以致用应助迅速的岩采纳,获得10
19秒前
英勇安筠发布了新的文献求助10
21秒前
行者无疆发布了新的文献求助10
22秒前
上官若男应助小葡萄采纳,获得10
22秒前
22秒前
23秒前
LAN21发布了新的文献求助10
24秒前
浮游应助有害学术辣鸡采纳,获得10
24秒前
Lucas应助科研小白采纳,获得10
26秒前
26秒前
28秒前
悦耳的翠芙完成签到,获得积分10
28秒前
清爽的真完成签到,获得积分10
28秒前
我ppp发布了新的文献求助10
30秒前
30秒前
科研通AI6应助1280065188采纳,获得10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645296
关于积分的说明 14674744
捐赠科研通 4586398
什么是DOI,文献DOI怎么找? 2516422
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870