FRCD: Feature Refine Change Detection Network for Remote Sensing Images

增采样 变更检测 计算机科学 特征(语言学) 卷积(计算机科学) 人工智能 特征提取 代表(政治) 模式识别(心理学) 编码(集合论) 图像(数学) 人工神经网络 哲学 语言学 集合(抽象数据类型) 政治 政治学 法学 程序设计语言
作者
Z.C. Wang,Zongxu Pan,Yuxin Hu,Bin Lei
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3303200
摘要

Change detection plays an important role in Earth surface analysis. Current change detection methods have achieved good performance in large flat areas, but change detection of detailed parts is still a great challenge, and the loss of detail causes many faults around the change boundaries and on small objects. By analyzing the feature map of the widely used U-Net architecture in existing methods, we ascribe the detail loss to the depletion of detailed features during the top-to-down delivery in the U-Net architecture. The Feature Refine Change Detection(FRCD) model is proposed in which the detection results are predicted directly from the multiscale features instead of the U-Net architecture. By direct prediction, the representation ability of details is enhanced, and thus the detection accuracy of boundaries and small objects improves. Moreover, the normal upsampling in direct prediction is replaced with the deformable upsampling, which delivers detailed information from the low-level to the high-level via the deformable convolution, allowing the results to further fit boundaries in the FRCD model. Experimental results on two datasets confirm the effectiveness of FRCD compared to state-of-the-art methods, and the change detection results of boundaries and small objects are improved significantly by the proposed method. Code will be available after the acceptance of the paper in https://github.com/ijnokml/cdfr.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蕨根蕨根发布了新的文献求助10
1秒前
1秒前
1秒前
平常书雪完成签到,获得积分10
3秒前
3秒前
chen发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
一团毛线完成签到,获得积分10
6秒前
苦咖啡发布了新的文献求助10
6秒前
7秒前
XIAOXIAO发布了新的文献求助10
9秒前
木子贝贝完成签到 ,获得积分10
10秒前
11秒前
Zx_1993应助papercloud采纳,获得20
11秒前
周涨杰发布了新的文献求助10
12秒前
13秒前
15秒前
16秒前
科研通AI6应助笑点低诗桃采纳,获得10
16秒前
尹不愁完成签到,获得积分10
17秒前
大风车完成签到,获得积分10
17秒前
无花关注了科研通微信公众号
17秒前
spinon发布了新的文献求助10
18秒前
好久不见发布了新的文献求助10
19秒前
舒心外套完成签到 ,获得积分10
20秒前
20秒前
20秒前
柯语雪完成签到 ,获得积分10
21秒前
爆米花应助榴莲柿子茶采纳,获得10
22秒前
Wtian完成签到,获得积分10
23秒前
24秒前
24秒前
Lucas应助杭苑博采纳,获得10
25秒前
26秒前
26秒前
26秒前
27秒前
遇上就这样吧应助Hysen_L采纳,获得300
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457723
求助须知:如何正确求助?哪些是违规求助? 4563994
关于积分的说明 14293028
捐赠科研通 4488769
什么是DOI,文献DOI怎么找? 2458704
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343