Machine Learning-Accelerated Discovery of A2BC2 Ternary Electrides with Diverse Anionic Electron Densities

化学 三元运算 亚稳态 催化作用 电子 电子密度 电子亲和性(数据页) 电子定域函数 化学物理 计算化学 分子 物理 有机化学 量子力学 计算机科学 程序设计语言
作者
Zhiqi Wang,Yutong Gong,Matthew L. Evans,Yujing Yan,Shiyao Wang,Nanxi Miao,Ruiheng Zheng,Gian‐Marco Rignanese,Junjie Wang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (48): 26412-26424 被引量:21
标识
DOI:10.1021/jacs.3c10538
摘要

This study combines machine learning (ML) and high-throughput calculations to uncover new ternary electrides in the A2BC2 family of compounds with the P4/mbm space group. Starting from a library of 214 known A2BC2 phases, density functional theory calculations were used to compute the maximum value of the electron localization function, indicating that 42 are potential electrides. A model was then trained on this data set and used to predict the electride behavior of 14,437 hypothetical compounds generated by structural prototyping. Then, the stability and electride features of the 1254 electride candidates predicted by the model were carefully checked by high-throughput calculations. Through this tiered approach, 41 stable and 104 metastable new A2BC2 electrides were predicted. Interestingly, all three kinds of electrides, i.e., electron-deficient, electron-neutral, and electron-rich electrides, are present in the set of predicted compounds. Three of the most promising new electrides (two electron-rich, Nd2ScSi2 and La2YbGe2, and one electron-deficient Y2LiSi2) were then successfully synthesized and characterized experimentally. Furthermore, the synthesized electrides were found to exhibit high catalytic activities for NH3 synthesis under mild conditions when Ru-loaded. The electron-deficient Y2LiSi2, in particular, was seen to exhibit a good balance of catalytic activity and chemical stability, suggesting its future application in catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yatou5651发布了新的文献求助30
刚刚
ppbk完成签到 ,获得积分10
刚刚
辛坦夫发布了新的文献求助10
1秒前
tianqi发布了新的文献求助10
1秒前
moon完成签到,获得积分10
3秒前
棉花糖发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
顾己发布了新的文献求助10
4秒前
大模型应助柔弱嵩采纳,获得10
4秒前
5秒前
不安丹烟完成签到,获得积分10
5秒前
6秒前
ACE发布了新的文献求助10
6秒前
fuiee完成签到,获得积分10
7秒前
小新完成签到,获得积分10
7秒前
科研通AI5应助jiaming采纳,获得10
7秒前
Hello应助嘀嘀嘀采纳,获得10
7秒前
8秒前
王哇噻完成签到 ,获得积分10
8秒前
10秒前
liulk发布了新的文献求助10
10秒前
筑楼听雨完成签到,获得积分10
10秒前
gm完成签到,获得积分10
10秒前
Eva发布了新的文献求助10
11秒前
我是老大应助wjx采纳,获得10
11秒前
Lucas应助Luhh采纳,获得10
11秒前
flow发布了新的文献求助10
11秒前
夕夜完成签到,获得积分10
12秒前
斯文败类应助激动的乐安采纳,获得10
13秒前
13秒前
小团子完成签到 ,获得积分10
14秒前
14秒前
16秒前
yuiyui09完成签到,获得积分20
16秒前
16秒前
kangnakangna完成签到,获得积分10
16秒前
LvXiaodie完成签到,获得积分10
17秒前
Jasper应助万事胜意采纳,获得10
17秒前
我是废物发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082371
求助须知:如何正确求助?哪些是违规求助? 4299730
关于积分的说明 13396998
捐赠科研通 4123608
什么是DOI,文献DOI怎么找? 2258463
邀请新用户注册赠送积分活动 1262720
关于科研通互助平台的介绍 1196681