VHXLA: A post-earthquake damage prediction method for high-speed railway track-bridge system using VMD and hybrid neural network

人工神经网络 计算机科学 桥(图论) 信号(编程语言) 希尔伯特-黄变换 深度学习 希尔伯特变换 磁道(磁盘驱动器) 人工智能 超参数 组分(热力学) 信号处理 模式识别(心理学) 工程类 数字信号处理 计算机视觉 热力学 滤波器(信号处理) 操作系统 物理 内科学 医学 程序设计语言 计算机硬件
作者
Kang Peng,Wangbao Zhou,Lizhong Jiang,Lijun Xiong,Jian Yu
出处
期刊:Engineering Structures [Elsevier]
卷期号:298: 117048-117048 被引量:4
标识
DOI:10.1016/j.engstruct.2023.117048
摘要

The timely and accurate prediction of post-earthquake damage is critically important for ensuring the safety of high-speed railway track-bridge systems. The study introduces a novel method known as the VHXLA model. This innovative model blends variational mode decomposition (VMD) with a hybrid neural network for predicting non-linear multi-component post-earthquake damage in high-speed railways. The VHXLA model comprises a signal processing module and a deep learning module. The signal processing module utilises VMD decomposition, and the Hilbert transform (HT) to transform two-dimensional seismic signals into four-dimensional complex time–frequency signals, thus simplifying the task of identifying seismic time–frequency characteristics via the neural network. The deep learning module integrates diverse types of neural network components, such as the Xception CNN feature extraction submodule, the LSTM RNN temporal learning submodule, and the multi-head attention mechanism submodule. A Bayesian self-optimisation method is implemented to determine the number of decomposition layers in VMD and select essential hyperparameters. The model's effectiveness is evaluated by predicting the damage of an experimentally validated finite element model, subjecting it to seismic loads, and thus gauging its performance. The results indicated that the signal processing module, based on VMD decomposition, significantly improves the neural network's signal processing capability. In addition, the synergistic integration of different modules in the VHXLA model provides superior prediction accuracy compared to pre-existing damage prediction models. Notably, the prediction accuracy is consistent across different positions of the same predicted component in the high-speed railway track-bridge system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
geyuanhong完成签到,获得积分10
1秒前
1秒前
小二郎应助光亮的笑槐采纳,获得10
2秒前
2113发布了新的文献求助10
2秒前
蜗牛二世完成签到 ,获得积分10
2秒前
3秒前
Vettel完成签到,获得积分10
4秒前
Yoisun发布了新的文献求助10
4秒前
5秒前
林贞宝宝发布了新的文献求助10
6秒前
淡漠完成签到 ,获得积分10
6秒前
7秒前
JCTdeTanfo发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
shizx完成签到,获得积分10
9秒前
姜夔发布了新的文献求助10
11秒前
11秒前
善良半梦发布了新的文献求助10
11秒前
清爽老九发布了新的文献求助10
11秒前
JCTdeTanfo完成签到,获得积分10
12秒前
13秒前
脑洞疼应助大马猴采纳,获得10
13秒前
Orange应助a海w采纳,获得10
15秒前
16秒前
希望天下0贩的0应助鲸落采纳,获得10
17秒前
17秒前
Mary完成签到 ,获得积分10
17秒前
bkagyin应助小喻采纳,获得10
18秒前
orixero应助凡是关于你的采纳,获得10
19秒前
20秒前
20秒前
Owen应助ZhangH采纳,获得20
20秒前
21秒前
小橙子完成签到,获得积分10
21秒前
淡淡的小懒虫应助森花采纳,获得10
22秒前
善学以致用应助听弦采纳,获得10
22秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459643
求助须知:如何正确求助?哪些是违规求助? 3053952
关于积分的说明 9039561
捐赠科研通 2743320
什么是DOI,文献DOI怎么找? 1504760
科研通“疑难数据库(出版商)”最低求助积分说明 695410
邀请新用户注册赠送积分活动 694699