VHXLA: A post-earthquake damage prediction method for high-speed railway track-bridge system using VMD and hybrid neural network

人工神经网络 计算机科学 桥(图论) 信号(编程语言) 希尔伯特-黄变换 深度学习 希尔伯特变换 磁道(磁盘驱动器) 人工智能 超参数 组分(热力学) 信号处理 模式识别(心理学) 工程类 数字信号处理 计算机视觉 热力学 滤波器(信号处理) 操作系统 物理 内科学 医学 程序设计语言 计算机硬件
作者
Kang Peng,Wangbao Zhou,Lizhong Jiang,Lijun Xiong,Jian Yu
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:298: 117048-117048 被引量:4
标识
DOI:10.1016/j.engstruct.2023.117048
摘要

The timely and accurate prediction of post-earthquake damage is critically important for ensuring the safety of high-speed railway track-bridge systems. The study introduces a novel method known as the VHXLA model. This innovative model blends variational mode decomposition (VMD) with a hybrid neural network for predicting non-linear multi-component post-earthquake damage in high-speed railways. The VHXLA model comprises a signal processing module and a deep learning module. The signal processing module utilises VMD decomposition, and the Hilbert transform (HT) to transform two-dimensional seismic signals into four-dimensional complex time–frequency signals, thus simplifying the task of identifying seismic time–frequency characteristics via the neural network. The deep learning module integrates diverse types of neural network components, such as the Xception CNN feature extraction submodule, the LSTM RNN temporal learning submodule, and the multi-head attention mechanism submodule. A Bayesian self-optimisation method is implemented to determine the number of decomposition layers in VMD and select essential hyperparameters. The model's effectiveness is evaluated by predicting the damage of an experimentally validated finite element model, subjecting it to seismic loads, and thus gauging its performance. The results indicated that the signal processing module, based on VMD decomposition, significantly improves the neural network's signal processing capability. In addition, the synergistic integration of different modules in the VHXLA model provides superior prediction accuracy compared to pre-existing damage prediction models. Notably, the prediction accuracy is consistent across different positions of the same predicted component in the high-speed railway track-bridge system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
4秒前
5秒前
锦诗完成签到,获得积分10
5秒前
zhi芝完成签到 ,获得积分10
5秒前
ding应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
yn发布了新的文献求助10
8秒前
深情安青应助shinn采纳,获得10
9秒前
10秒前
10秒前
梓歆发布了新的文献求助10
11秒前
麦麦完成签到,获得积分10
11秒前
栗子发布了新的文献求助10
12秒前
蓝胖子完成签到,获得积分20
14秒前
玄川完成签到,获得积分10
15秒前
16秒前
JamesPei应助obaica采纳,获得10
17秒前
17秒前
18秒前
19秒前
幻月完成签到,获得积分10
19秒前
20秒前
麦克阿宇完成签到,获得积分10
21秒前
块块发布了新的文献求助10
22秒前
青衣北风发布了新的文献求助10
22秒前
shinn发布了新的文献求助10
23秒前
xuexi发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528