A computer vision approach to continuously monitor fatigue during resistance training

计算机科学 自感劳累评分 人工智能 蹲下 过度训练 感知器 人工神经网络 梯度升压 模拟 机器学习 随机森林 运动员 物理医学与康复 物理疗法 心率 血压 医学 放射科
作者
Justin Amadeus Albert,Bert Arnrich
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:89: 105701-105701 被引量:2
标识
DOI:10.1016/j.bspc.2023.105701
摘要

Monitoring fatigue during resistance training is essential to avoid injuries caused by overtraining. Fatigue can be comprehensively quantified by the external and internal load, where the external load is the work done by the athlete, and the internal load is the psychological and physiological response to the external load. This paper proposes a computer vision method to continuously monitor fatigue during resistance training by predicting external and internal parameters, namely the generated power and the rating of perceived exertion. We utilize the human pose estimation from two Microsoft Azure Kinect cameras to capture the movement of athletes while performing stationary exercises. Our method processes the obtained kinematic data, computes skeleton features to train traditional machine learning algorithms, and constructs feature maps to train convolutional neural network-based models to predict the load parameters. For evaluation, we recorded a dataset of 16 subjects who performed squat exercises on a Flywheel and rated their perceived exertion after each set. A measuring unit integrated into the Flywheel provided power readings for each repetition. The results show that our method achieves good results in predicting both parameters. Gradient Boosting Regression Trees best predicted perceived exertion with a mean absolute percentage error of 8.08% and a Spearman's ρ=0.74. Multi-layer Perceptron performed best in predicting power with a mean absolute error of 23.13 Watts and ρ=0.79. Our findings show that our approach delivers promising external and internal load quantifications for fatigue, with great potential to provide external feedback to coaches or athletes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿湫发布了新的文献求助10
刚刚
Qsss发布了新的文献求助10
刚刚
刚刚
1秒前
JamesPei应助111采纳,获得10
1秒前
执笔完成签到,获得积分10
1秒前
手可摘星辰完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
李健应助大帅采纳,获得10
3秒前
4秒前
冷艳的火龙果完成签到,获得积分10
4秒前
不知完成签到 ,获得积分10
4秒前
Zard发布了新的文献求助10
6秒前
清仔发布了新的文献求助10
6秒前
7秒前
大地上的鱼完成签到,获得积分10
7秒前
7秒前
上官若男应助平常的路人采纳,获得10
7秒前
小花发布了新的文献求助10
8秒前
庸俗完成签到,获得积分10
9秒前
10秒前
论文顺利发布了新的文献求助10
10秒前
10秒前
砚行书完成签到,获得积分10
10秒前
CodeCraft应助Qsss采纳,获得10
10秒前
情怀应助葫芦娃采纳,获得10
11秒前
小慈爱鸡完成签到 ,获得积分10
11秒前
ttelsa完成签到,获得积分10
11秒前
年轻小之完成签到 ,获得积分10
11秒前
11秒前
snowdream发布了新的文献求助10
12秒前
xiaoying完成签到,获得积分10
12秒前
14秒前
大帅发布了新的文献求助10
14秒前
深情丸子发布了新的文献求助10
14秒前
通通真行完成签到,获得积分10
15秒前
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048