已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A stock series prediction model based on variational mode decomposition and dual-channel attention network

计算机科学 库存(枪支) 计量经济学 波动性(金融) 时间序列 股票市场 市场流动性 算法 数据挖掘 数学 财务 经济 机器学习 工程类 古生物学 生物 机械工程
作者
Yepeng Liu,Siyuan Huang,Xiaoyi Tian,Fan Zhang,Feng Zhao,Caiming Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121708-121708 被引量:16
标识
DOI:10.1016/j.eswa.2023.121708
摘要

Due to the comprehensive impact of external factors (politics, economy, market, etc.) and internal factors (organizational structure, management ability, innovation capability, etc.), stock series exhibit strong volatility. Coupled with their inherent high liquidity, it poses great challenges for stock series prediction. However, the previous stock series forecasting methods often only pay attention to the long-term dependencies, and lack attention to the local features and short-term dependencies. In this regard a stock series prediction model based on variational mode decomposition and dual-channel attention network is proposed, which is called VMD-LSTMA+TCNA. To prevent information leakage, the stock series is divided into equal-length sub-windows by sliding window. To reduce the series volatility, each sub-window is decomposed into different frequency mode sub-windows through variational mode decomposition (VMD). To improve the prediction accuracy and robustness in different stock markets, we construct a dual-channel attention model called LSTMA+TCNA. The LSTMA channel is used to extract long-term dependencies and temporally correlated features, while the TCNA channel is used to extract local patterns and short-term dependencies, and self-attention is added to both channels to increase the weight of features at important times. Predict each frequency mode sub-window separately through the specific LSTMA and TCNA channels, and then obtain the predicted values by fusing the results of dual-channel. The final predicted stock series is obtained by superimposing the predicted values of each frequency mode sub-window. Through extensive experiments on the US and Hong Kong stock markets, it has been shown that the VMD-LSTMA+TCNA model exhibits better robustness and generalization compared to other state-of-the-art methods and has higher prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝桉应助yaney采纳,获得30
5秒前
Lucas应助yaney采纳,获得10
5秒前
8秒前
vinss66home完成签到,获得积分10
10秒前
eureka发布了新的文献求助30
12秒前
nannan发布了新的文献求助10
13秒前
luochen完成签到 ,获得积分10
21秒前
充电宝应助wang5945采纳,获得10
27秒前
chen完成签到 ,获得积分10
28秒前
小张完成签到 ,获得积分10
32秒前
ZhJF完成签到 ,获得积分10
36秒前
40秒前
oleskarabach完成签到,获得积分20
42秒前
44秒前
45秒前
闪闪的硬币完成签到 ,获得积分10
45秒前
47秒前
饭神仙鱼发布了新的文献求助10
48秒前
yyh发布了新的文献求助10
48秒前
老孟完成签到,获得积分10
50秒前
50秒前
钮卿完成签到 ,获得积分10
51秒前
赵正强完成签到 ,获得积分10
52秒前
eureka发布了新的文献求助10
54秒前
tk发布了新的文献求助10
55秒前
55秒前
Amancio118完成签到 ,获得积分10
57秒前
wish完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助tk采纳,获得10
1分钟前
1分钟前
科研yu完成签到,获得积分10
1分钟前
yaney完成签到,获得积分10
1分钟前
阿豆阿豆发布了新的文献求助10
1分钟前
1分钟前
岸在海的深处完成签到 ,获得积分10
1分钟前
一只东北鸟完成签到 ,获得积分10
1分钟前
丹丹发布了新的文献求助10
1分钟前
科研小白完成签到,获得积分10
1分钟前
1分钟前
丹丹完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3381102
求助须知:如何正确求助?哪些是违规求助? 2996155
关于积分的说明 8767583
捐赠科研通 2681333
什么是DOI,文献DOI怎么找? 1468498
科研通“疑难数据库(出版商)”最低求助积分说明 679009
邀请新用户注册赠送积分活动 671103