On the Use of ChatGPT for Classifying Domain Terms According to Upper Ontologies

本体论 计算机科学 领域(数学分析) 任务(项目管理) 情报检索 集合(抽象数据类型) 上市(财务) 上层本体 基线(sea) 自然语言处理 人工智能 语义网 数学 数学分析 哲学 海洋学 管理 认识论 财务 经济 程序设计语言 地质学
作者
Fabrício Henrique Rodrigues,Alcides Lopes,Nicolau O. Santos,Luan Fonseca Garcia,Joel Luís Carbonera,Mara Abel
出处
期刊:Lecture Notes in Computer Science 卷期号:: 249-258
标识
DOI:10.1007/978-3-031-47112-4_24
摘要

In this paper, we report an experiment to investigate the performance of ChatGPT in the task of classifying domain terms according to the categories of upper-level ontologies. The experiment consisted of (1) starting a conversation in ChatGPT with a contextual prompt listing the categories of an upper-level ontology along with their definitions, (2) submitting a follow-up prompt with a list of terms from a domain along with informal definitions, (3) asking ChatGPT to classify the terms according to the categories of the chosen upper-level ontology and explain its decision, and (4) comparing the answers of ChatGPT with the classification proposed by experts in the chosen ontology. Given the results, we evaluated the success rate of ChatGPT in performing the task and analyzed the cases of misclassification to understand the possible reasons underlying them. Based on that, we made some considerations about the extent to which we can employ ChatGPT as an assistant tool for the task of classifying domain terms into upper-level ontologies. For our experiment, we selected a set of 19 terms from the manufacturing domain that were gathered by the Industrial Ontologies Foundry (IOF) and for which there are informal textual definitions reflecting a community view of them. Also, as a baseline for comparison, we resorted to publicly available classifications of such terms according to DOLCE and BFO upper-level ontologies, which resulted from a thorough ontological analysis of those terms and informal definitions by experts in each of the ontologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信梦易给自信梦易的求助进行了留言
1秒前
科研通AI6应助maxyer采纳,获得10
1秒前
温莉莉发布了新的文献求助10
1秒前
小酒窝完成签到,获得积分10
2秒前
王正浩发布了新的文献求助10
2秒前
金咪发布了新的文献求助10
3秒前
王院士发布了新的文献求助10
3秒前
3秒前
充电宝应助阳光的幻灵采纳,获得10
3秒前
3秒前
华仔应助zzioo采纳,获得10
4秒前
Hello应助惊鸿采纳,获得10
4秒前
Orange应助张钰子采纳,获得10
4秒前
4秒前
丹丹发布了新的文献求助10
4秒前
4秒前
nnd完成签到,获得积分10
4秒前
4秒前
明理的帆布鞋完成签到,获得积分10
4秒前
4秒前
4秒前
yznfly应助研友_851Dp8采纳,获得50
5秒前
5秒前
辣子面完成签到,获得积分10
5秒前
realmar完成签到,获得积分10
6秒前
ff完成签到,获得积分10
6秒前
ding应助Ni采纳,获得10
7秒前
7秒前
Ava应助TM采纳,获得10
7秒前
7秒前
乐乐应助尊敬的晓亦采纳,获得10
7秒前
啦啦完成签到,获得积分10
8秒前
优美思卉发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
兔子发布了新的文献求助10
9秒前
9秒前
爱的魔力转圈圈完成签到,获得积分10
9秒前
纯真的凝安完成签到,获得积分10
10秒前
汛钥发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525469
求助须知:如何正确求助?哪些是违规求助? 4615735
关于积分的说明 14549889
捐赠科研通 4553747
什么是DOI,文献DOI怎么找? 2495475
邀请新用户注册赠送积分活动 1476072
关于科研通互助平台的介绍 1447793