Federated Condition Generalization on Low-dose CT Reconstruction via Cross-domain Learning

一般化 计算机科学 人工智能 深度学习 噪音(视频) 医学影像学 领域(数学分析) 迭代重建 计算机视觉 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Shixuan Chen,Boxuan Cao,Y. F. Du,Yaoduo Zhang,Ji He,Zhaoying Bian,Dong Zeng,Jianhua Ma
出处
期刊:Lecture Notes in Computer Science 卷期号:: 47-56 被引量:1
标识
DOI:10.1007/978-3-031-43898-1_5
摘要

The harmful radiation dose associated with CT imaging is a major concern because it can cause genetic diseases. Acquiring CT data at low radiation doses has become a pressing goal. Deep learning (DL)-based methods have proven to suppress noise-induced artifacts and promote image quality in low-dose CT imaging. However, it should be noted that most of the DL-based methods are constructed based on the CT data from a specific condition, i.e., specific imaging geometry and specific dose level. Then these methods might generalize poorly to the other conditions, i.e., different imaging geometries and other radiation doses, due to the big data heterogeneity. In this study, to address this issue, we propose a condition generalization method under a federated learning framework (FedCG) to reconstruct CT images on two conditions: three different dose levels and different sampling shcemes at three different geometries. Specifically, the proposed FedCG method leverages a cross-domain learning approach: individual-client sinogram learning and cross-client image reconstruction for condition generalization. In each individual client, the sinogram at each condition is processed similarly to that in the iRadonMAP. Then the CT images at each client are learned via a condition generalization network in the server which considers latent common characteristics in the CT images at all conditions and preserves the client-specific characteristics in each condition. Experiments show that the proposed FedCG outperforms the other competing methods on two imaging conditions in terms of qualitative and quantitative assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻发布了新的文献求助30
刚刚
椿椿完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助仔仔采纳,获得10
1秒前
3秒前
4秒前
4秒前
万康发布了新的文献求助10
6秒前
繁荣的鲂完成签到,获得积分10
7秒前
凶狠的盼柳完成签到,获得积分10
7秒前
小刘鸭鸭完成签到,获得积分10
8秒前
8秒前
8秒前
Uuuuuuumi完成签到 ,获得积分10
9秒前
端庄的煎蛋完成签到,获得积分10
13秒前
13秒前
13秒前
研友_VZG7GZ应助万康采纳,获得10
13秒前
14秒前
Wy完成签到,获得积分20
14秒前
baobaonaixi完成签到,获得积分10
15秒前
16秒前
丘比特应助zeng采纳,获得10
17秒前
Wy发布了新的文献求助10
17秒前
强博弈发布了新的文献求助10
17秒前
天真的羊青完成签到 ,获得积分10
18秒前
19秒前
医痞子发布了新的文献求助10
19秒前
ivying0209发布了新的文献求助10
20秒前
20秒前
鱼莉完成签到,获得积分10
20秒前
瓜尔佳发布了新的文献求助10
22秒前
夏青完成签到,获得积分20
22秒前
foreve1完成签到,获得积分10
23秒前
感动语蝶发布了新的文献求助10
23秒前
李健的小迷弟应助red采纳,获得10
24秒前
wanci应助追寻思雁采纳,获得10
25秒前
傲慢与偏见zz应助LDDDGR采纳,获得10
25秒前
科研通AI2S应助花音采纳,获得10
26秒前
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244153
求助须知:如何正确求助?哪些是违规求助? 2887922
关于积分的说明 8250452
捐赠科研通 2556491
什么是DOI,文献DOI怎么找? 1384663
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625984