Remaining useful life prediction of lithium battery based on ACNN-Mogrifier LSTM-MMD

电池(电) 计算机科学 容量损失 电池容量 降级(电信) 可靠性(半导体) 循环神经网络 人工神经网络 卷积神经网络 人工智能 模式识别(心理学) 算法 电信 功率(物理) 物理 量子力学
作者
Zihan Li,Li Ai,Fang Bai,Hongfu Zuo,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 016101-016101 被引量:13
标识
DOI:10.1088/1361-6501/ad006d
摘要

Abstract Predicting the remaining useful life (RUL) of lithium batteries is crucial for predicting battery failure and health management. Accurately estimating the RUL allows for timely maintenance and replacement of batteries that pose safety risks. To enhance the safety and reliability of lithium battery operations, this paper proposes a lithium battery life prediction model, attention mechanism-convolutional neural network (ACNN)-Mogrifier long and short-term memory network (LSTM)-maximum mean discrepancy (MMD), based on ACNN, Mogrifier LSTM, and MMD Feature Transfer Learning. Firstly, the capacity degradation data from historical life experiments of lithium batteries in both source and target domains are extracted. The whale optimization algorithm (WOA) is employed to optimize the parameters of variational modal decomposition, enabling the decomposition of the historical capacity degradation data into multiple intrinsic mode functions (IMFs) components. Secondly, highly correlated IMF components are identified using the Pearson correlation coefficient (Pearson) to reconstruct the capacity sequence, which characterizes the capacity degradation information of the lithium batteries. These reconstructed sequences are inputs to the ACNN model to extract features from the capacity degradation data. The extracted features are then utilized to compute MMD values, quantifying the distribution differences between the two domains. The Mogrifier LSTM neural network estimates the capacity values of the source and target domains and calculates the loss functions by comparing them to the actual capacity values. These loss functions, along with the computed MMD values, are combined to obtain the combined loss function of the model. Finally, the ACNN-Mogrifier LSTM-MMD is applied to the target domain data to formulate the lithium battery RUL prediction model. The effectiveness of the proposed method is validated using CACLE and NASA lithium battery datasets, The experimental results demonstrate that the predicted error of the RUL for the B5 battery is less than 6% for mean absolute percentage error (MAPE) and less than 1 for RU L Error . Similarly, the RUL prediction error for the B6 battery is below 10% for MAPE and less than 1 for RU L Error . This indicates higher accuracy compared to other prediction methods, along with improved robustness and practicality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倩倩发布了新的文献求助10
1秒前
受伤鸡发布了新的文献求助10
2秒前
坚果完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
jesmblaq发布了新的文献求助10
3秒前
AAngelica完成签到,获得积分10
3秒前
ElviraHuang完成签到 ,获得积分10
5秒前
5秒前
李昕123发布了新的文献求助10
7秒前
7秒前
8秒前
Canyon完成签到,获得积分10
9秒前
刘l完成签到,获得积分10
9秒前
9699完成签到,获得积分20
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
破碎时间完成签到 ,获得积分10
11秒前
11秒前
11秒前
orixero应助忐忑的不可采纳,获得10
12秒前
科研通AI2S应助zhouyan采纳,获得10
12秒前
13秒前
蔡勇强发布了新的文献求助10
13秒前
小虫虫完成签到,获得积分10
13秒前
饼饼大王完成签到,获得积分10
13秒前
13013523252完成签到,获得积分10
13秒前
15秒前
hy发布了新的文献求助10
15秒前
科研通AI6应助tph采纳,获得10
16秒前
jesmblaq完成签到,获得积分10
17秒前
文静的夜阑完成签到,获得积分20
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
苹果有毒发布了新的文献求助10
18秒前
小石头完成签到,获得积分10
20秒前
21秒前
13013523252发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812