Remaining useful life prediction of lithium battery based on ACNN-Mogrifier LSTM-MMD

电池(电) 计算机科学 容量损失 电池容量 降级(电信) 可靠性(半导体) 循环神经网络 人工神经网络 卷积神经网络 人工智能 模式识别(心理学) 算法 电信 功率(物理) 物理 量子力学
作者
Zihan Li,Li Ai,Fang Bai,Hongfu Zuo,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 016101-016101 被引量:13
标识
DOI:10.1088/1361-6501/ad006d
摘要

Abstract Predicting the remaining useful life (RUL) of lithium batteries is crucial for predicting battery failure and health management. Accurately estimating the RUL allows for timely maintenance and replacement of batteries that pose safety risks. To enhance the safety and reliability of lithium battery operations, this paper proposes a lithium battery life prediction model, attention mechanism-convolutional neural network (ACNN)-Mogrifier long and short-term memory network (LSTM)-maximum mean discrepancy (MMD), based on ACNN, Mogrifier LSTM, and MMD Feature Transfer Learning. Firstly, the capacity degradation data from historical life experiments of lithium batteries in both source and target domains are extracted. The whale optimization algorithm (WOA) is employed to optimize the parameters of variational modal decomposition, enabling the decomposition of the historical capacity degradation data into multiple intrinsic mode functions (IMFs) components. Secondly, highly correlated IMF components are identified using the Pearson correlation coefficient (Pearson) to reconstruct the capacity sequence, which characterizes the capacity degradation information of the lithium batteries. These reconstructed sequences are inputs to the ACNN model to extract features from the capacity degradation data. The extracted features are then utilized to compute MMD values, quantifying the distribution differences between the two domains. The Mogrifier LSTM neural network estimates the capacity values of the source and target domains and calculates the loss functions by comparing them to the actual capacity values. These loss functions, along with the computed MMD values, are combined to obtain the combined loss function of the model. Finally, the ACNN-Mogrifier LSTM-MMD is applied to the target domain data to formulate the lithium battery RUL prediction model. The effectiveness of the proposed method is validated using CACLE and NASA lithium battery datasets, The experimental results demonstrate that the predicted error of the RUL for the B5 battery is less than 6% for mean absolute percentage error (MAPE) and less than 1 for RU L Error . Similarly, the RUL prediction error for the B6 battery is below 10% for MAPE and less than 1 for RU L Error . This indicates higher accuracy compared to other prediction methods, along with improved robustness and practicality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助zhihui采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
momosijia发布了新的文献求助10
3秒前
3秒前
自信晟睿发布了新的文献求助10
3秒前
平淡雪枫完成签到 ,获得积分10
3秒前
LS31发布了新的文献求助20
4秒前
Tingyu完成签到,获得积分10
4秒前
小欣发布了新的文献求助10
4秒前
LewisAcid举报量子星尘求助涉嫌违规
5秒前
5秒前
HLL发布了新的文献求助10
5秒前
Ethanyoyo0917完成签到,获得积分10
6秒前
6秒前
大气怜烟发布了新的文献求助10
6秒前
无极微光应助唯昭采纳,获得20
6秒前
6秒前
kong溪1002发布了新的文献求助10
6秒前
研友_ZrlaXL完成签到,获得积分10
7秒前
在水一方应助修狗儿采纳,获得10
7秒前
华仔应助双儿采纳,获得10
7秒前
李运发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
哈哈完成签到 ,获得积分10
8秒前
文耳东发布了新的文献求助10
8秒前
8秒前
hihi完成签到 ,获得积分10
8秒前
FL发布了新的文献求助30
9秒前
enen发布了新的文献求助10
9秒前
9秒前
无极微光应助hahha采纳,获得20
9秒前
9秒前
sssjjjxx完成签到,获得积分20
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066