Remaining useful life prediction of lithium battery based on ACNN-Mogrifier LSTM-MMD

电池(电) 计算机科学 容量损失 电池容量 降级(电信) 可靠性(半导体) 循环神经网络 人工神经网络 卷积神经网络 人工智能 模式识别(心理学) 算法 量子力学 电信 物理 功率(物理)
作者
Zihan Li,Li Ai,Fang Bai,Hongfu Zuo,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 016101-016101 被引量:13
标识
DOI:10.1088/1361-6501/ad006d
摘要

Abstract Predicting the remaining useful life (RUL) of lithium batteries is crucial for predicting battery failure and health management. Accurately estimating the RUL allows for timely maintenance and replacement of batteries that pose safety risks. To enhance the safety and reliability of lithium battery operations, this paper proposes a lithium battery life prediction model, attention mechanism-convolutional neural network (ACNN)-Mogrifier long and short-term memory network (LSTM)-maximum mean discrepancy (MMD), based on ACNN, Mogrifier LSTM, and MMD Feature Transfer Learning. Firstly, the capacity degradation data from historical life experiments of lithium batteries in both source and target domains are extracted. The whale optimization algorithm (WOA) is employed to optimize the parameters of variational modal decomposition, enabling the decomposition of the historical capacity degradation data into multiple intrinsic mode functions (IMFs) components. Secondly, highly correlated IMF components are identified using the Pearson correlation coefficient (Pearson) to reconstruct the capacity sequence, which characterizes the capacity degradation information of the lithium batteries. These reconstructed sequences are inputs to the ACNN model to extract features from the capacity degradation data. The extracted features are then utilized to compute MMD values, quantifying the distribution differences between the two domains. The Mogrifier LSTM neural network estimates the capacity values of the source and target domains and calculates the loss functions by comparing them to the actual capacity values. These loss functions, along with the computed MMD values, are combined to obtain the combined loss function of the model. Finally, the ACNN-Mogrifier LSTM-MMD is applied to the target domain data to formulate the lithium battery RUL prediction model. The effectiveness of the proposed method is validated using CACLE and NASA lithium battery datasets, The experimental results demonstrate that the predicted error of the RUL for the B5 battery is less than 6% for mean absolute percentage error (MAPE) and less than 1 for RU L Error . Similarly, the RUL prediction error for the B6 battery is below 10% for MAPE and less than 1 for RU L Error . This indicates higher accuracy compared to other prediction methods, along with improved robustness and practicality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoe发布了新的文献求助10
刚刚
ashley325完成签到,获得积分10
刚刚
在水一方应助爱上秋风采纳,获得10
1秒前
专注白昼完成签到,获得积分10
1秒前
一涵呀发布了新的文献求助10
2秒前
2秒前
2秒前
zoe11发布了新的文献求助10
3秒前
华仔应助asiya采纳,获得10
3秒前
飞翔完成签到,获得积分10
4秒前
shuenghei完成签到,获得积分10
5秒前
Cai发布了新的文献求助10
5秒前
zxd发布了新的文献求助10
6秒前
yuyu完成签到,获得积分10
6秒前
6秒前
风中书竹完成签到,获得积分10
7秒前
风清扬发布了新的文献求助10
7秒前
陈颖完成签到,获得积分10
7秒前
yan发布了新的文献求助10
7秒前
二柱子发布了新的文献求助10
8秒前
世安发布了新的文献求助10
8秒前
8秒前
LLL完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
FashionBoy应助追寻的书竹采纳,获得10
11秒前
11秒前
12秒前
丝绒发布了新的文献求助10
12秒前
英俊的铭应助欣慰的妙菱采纳,获得10
13秒前
NI完成签到 ,获得积分10
13秒前
Lizhenzhen123完成签到,获得积分10
14秒前
14秒前
墨子给期刊的求助进行了留言
14秒前
future发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
Cai完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718326
求助须知:如何正确求助?哪些是违规求助? 5252062
关于积分的说明 15285429
捐赠科研通 4868586
什么是DOI,文献DOI怎么找? 2614247
邀请新用户注册赠送积分活动 1564094
关于科研通互助平台的介绍 1521578