Remaining useful life prediction of lithium battery based on ACNN-Mogrifier LSTM-MMD

电池(电) 计算机科学 容量损失 电池容量 降级(电信) 可靠性(半导体) 循环神经网络 人工神经网络 卷积神经网络 人工智能 模式识别(心理学) 算法 电信 功率(物理) 物理 量子力学
作者
Zihan Li,Li Ai,Fang Bai,Hongfu Zuo,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 016101-016101 被引量:13
标识
DOI:10.1088/1361-6501/ad006d
摘要

Abstract Predicting the remaining useful life (RUL) of lithium batteries is crucial for predicting battery failure and health management. Accurately estimating the RUL allows for timely maintenance and replacement of batteries that pose safety risks. To enhance the safety and reliability of lithium battery operations, this paper proposes a lithium battery life prediction model, attention mechanism-convolutional neural network (ACNN)-Mogrifier long and short-term memory network (LSTM)-maximum mean discrepancy (MMD), based on ACNN, Mogrifier LSTM, and MMD Feature Transfer Learning. Firstly, the capacity degradation data from historical life experiments of lithium batteries in both source and target domains are extracted. The whale optimization algorithm (WOA) is employed to optimize the parameters of variational modal decomposition, enabling the decomposition of the historical capacity degradation data into multiple intrinsic mode functions (IMFs) components. Secondly, highly correlated IMF components are identified using the Pearson correlation coefficient (Pearson) to reconstruct the capacity sequence, which characterizes the capacity degradation information of the lithium batteries. These reconstructed sequences are inputs to the ACNN model to extract features from the capacity degradation data. The extracted features are then utilized to compute MMD values, quantifying the distribution differences between the two domains. The Mogrifier LSTM neural network estimates the capacity values of the source and target domains and calculates the loss functions by comparing them to the actual capacity values. These loss functions, along with the computed MMD values, are combined to obtain the combined loss function of the model. Finally, the ACNN-Mogrifier LSTM-MMD is applied to the target domain data to formulate the lithium battery RUL prediction model. The effectiveness of the proposed method is validated using CACLE and NASA lithium battery datasets, The experimental results demonstrate that the predicted error of the RUL for the B5 battery is less than 6% for mean absolute percentage error (MAPE) and less than 1 for RU L Error . Similarly, the RUL prediction error for the B6 battery is below 10% for MAPE and less than 1 for RU L Error . This indicates higher accuracy compared to other prediction methods, along with improved robustness and practicality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd完成签到 ,获得积分10
刚刚
刚刚
庸俗完成签到,获得积分20
1秒前
1秒前
黄晓梅给黄晓梅的求助进行了留言
1秒前
隐形曼青应助gbr0519采纳,获得10
2秒前
风中尔蝶关注了科研通微信公众号
2秒前
小二郎应助tz采纳,获得10
2秒前
梨子发布了新的文献求助10
2秒前
1134695021完成签到,获得积分10
3秒前
3秒前
轻松完成签到,获得积分10
3秒前
赘婿应助春儿采纳,获得10
3秒前
闾丘惜萱完成签到,获得积分10
3秒前
3秒前
4秒前
科研通AI5应助小黄采纳,获得10
4秒前
申左一发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
斜玉发布了新的文献求助10
5秒前
zcs完成签到,获得积分10
5秒前
大模型应助吴剑宇采纳,获得10
6秒前
6秒前
小蘑菇应助随便吧采纳,获得10
7秒前
trust发布了新的文献求助10
7秒前
9秒前
10秒前
李哈哈发布了新的文献求助10
10秒前
科研通AI5应助cary采纳,获得10
10秒前
10秒前
威武雪兰完成签到,获得积分10
10秒前
11秒前
aktuell完成签到,获得积分10
11秒前
昵称完成签到,获得积分10
12秒前
077发布了新的文献求助10
13秒前
13秒前
赘婿应助熬夜的桃子采纳,获得10
13秒前
bkagyin应助单薄小蜜蜂采纳,获得30
13秒前
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482