已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remaining useful life prediction of lithium battery based on ACNN-Mogrifier LSTM-MMD

电池(电) 计算机科学 容量损失 电池容量 降级(电信) 可靠性(半导体) 循环神经网络 人工神经网络 卷积神经网络 人工智能 模式识别(心理学) 算法 量子力学 电信 物理 功率(物理)
作者
Zihan Li,Li Ai,Fang Bai,Hongfu Zuo,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 016101-016101 被引量:13
标识
DOI:10.1088/1361-6501/ad006d
摘要

Abstract Predicting the remaining useful life (RUL) of lithium batteries is crucial for predicting battery failure and health management. Accurately estimating the RUL allows for timely maintenance and replacement of batteries that pose safety risks. To enhance the safety and reliability of lithium battery operations, this paper proposes a lithium battery life prediction model, attention mechanism-convolutional neural network (ACNN)-Mogrifier long and short-term memory network (LSTM)-maximum mean discrepancy (MMD), based on ACNN, Mogrifier LSTM, and MMD Feature Transfer Learning. Firstly, the capacity degradation data from historical life experiments of lithium batteries in both source and target domains are extracted. The whale optimization algorithm (WOA) is employed to optimize the parameters of variational modal decomposition, enabling the decomposition of the historical capacity degradation data into multiple intrinsic mode functions (IMFs) components. Secondly, highly correlated IMF components are identified using the Pearson correlation coefficient (Pearson) to reconstruct the capacity sequence, which characterizes the capacity degradation information of the lithium batteries. These reconstructed sequences are inputs to the ACNN model to extract features from the capacity degradation data. The extracted features are then utilized to compute MMD values, quantifying the distribution differences between the two domains. The Mogrifier LSTM neural network estimates the capacity values of the source and target domains and calculates the loss functions by comparing them to the actual capacity values. These loss functions, along with the computed MMD values, are combined to obtain the combined loss function of the model. Finally, the ACNN-Mogrifier LSTM-MMD is applied to the target domain data to formulate the lithium battery RUL prediction model. The effectiveness of the proposed method is validated using CACLE and NASA lithium battery datasets, The experimental results demonstrate that the predicted error of the RUL for the B5 battery is less than 6% for mean absolute percentage error (MAPE) and less than 1 for RU L Error . Similarly, the RUL prediction error for the B6 battery is below 10% for MAPE and less than 1 for RU L Error . This indicates higher accuracy compared to other prediction methods, along with improved robustness and practicality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稀里糊涂完成签到 ,获得积分10
1秒前
一轮太阳和幻想完成签到,获得积分10
1秒前
CHSLN完成签到 ,获得积分10
3秒前
852应助kezi采纳,获得10
3秒前
菜根谭完成签到 ,获得积分10
4秒前
9秒前
LJ_2完成签到 ,获得积分10
10秒前
142857发布了新的文献求助10
10秒前
aoba完成签到 ,获得积分10
15秒前
许多知识发布了新的文献求助10
15秒前
17秒前
20秒前
柠檬水发布了新的文献求助10
21秒前
142857完成签到,获得积分10
22秒前
Wmhan发布了新的文献求助30
25秒前
情怀应助张星星采纳,获得10
27秒前
29秒前
onmyway发布了新的文献求助10
29秒前
123发布了新的文献求助10
32秒前
碧蓝溪流完成签到 ,获得积分10
33秒前
kezi发布了新的文献求助10
34秒前
36秒前
yee完成签到,获得积分10
37秒前
38秒前
pop发布了新的文献求助30
40秒前
张星星发布了新的文献求助10
43秒前
凉的白开完成签到,获得积分10
44秒前
pop完成签到,获得积分10
48秒前
49秒前
onmyway完成签到,获得积分10
50秒前
自由的黑猫完成签到,获得积分10
50秒前
keleboys完成签到 ,获得积分10
50秒前
雨点从两旁划过完成签到 ,获得积分10
51秒前
ste56发布了新的文献求助10
54秒前
次一口多多完成签到,获得积分10
1分钟前
研友_ngX12Z完成签到 ,获得积分10
1分钟前
1分钟前
慕青应助ste56采纳,获得10
1分钟前
Rainbow完成签到 ,获得积分10
1分钟前
LJ_scholar发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953340
求助须知:如何正确求助?哪些是违规求助? 3498849
关于积分的说明 11093159
捐赠科研通 3229336
什么是DOI,文献DOI怎么找? 1785311
邀请新用户注册赠送积分活动 869379
科研通“疑难数据库(出版商)”最低求助积分说明 801439