Remaining useful life prediction of lithium battery based on ACNN-Mogrifier LSTM-MMD

电池(电) 计算机科学 容量损失 电池容量 降级(电信) 可靠性(半导体) 循环神经网络 人工神经网络 卷积神经网络 人工智能 模式识别(心理学) 算法 电信 功率(物理) 物理 量子力学
作者
Zihan Li,Li Ai,Fang Bai,Hongfu Zuo,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 016101-016101 被引量:3
标识
DOI:10.1088/1361-6501/ad006d
摘要

Abstract Predicting the remaining useful life (RUL) of lithium batteries is crucial for predicting battery failure and health management. Accurately estimating the RUL allows for timely maintenance and replacement of batteries that pose safety risks. To enhance the safety and reliability of lithium battery operations, this paper proposes a lithium battery life prediction model, attention mechanism-convolutional neural network (ACNN)-Mogrifier long and short-term memory network (LSTM)-maximum mean discrepancy (MMD), based on ACNN, Mogrifier LSTM, and MMD Feature Transfer Learning. Firstly, the capacity degradation data from historical life experiments of lithium batteries in both source and target domains are extracted. The whale optimization algorithm (WOA) is employed to optimize the parameters of variational modal decomposition, enabling the decomposition of the historical capacity degradation data into multiple intrinsic mode functions (IMFs) components. Secondly, highly correlated IMF components are identified using the Pearson correlation coefficient (Pearson) to reconstruct the capacity sequence, which characterizes the capacity degradation information of the lithium batteries. These reconstructed sequences are inputs to the ACNN model to extract features from the capacity degradation data. The extracted features are then utilized to compute MMD values, quantifying the distribution differences between the two domains. The Mogrifier LSTM neural network estimates the capacity values of the source and target domains and calculates the loss functions by comparing them to the actual capacity values. These loss functions, along with the computed MMD values, are combined to obtain the combined loss function of the model. Finally, the ACNN-Mogrifier LSTM-MMD is applied to the target domain data to formulate the lithium battery RUL prediction model. The effectiveness of the proposed method is validated using CACLE and NASA lithium battery datasets, The experimental results demonstrate that the predicted error of the RUL for the B5 battery is less than 6% for mean absolute percentage error (MAPE) and less than 1 for RU L Error . Similarly, the RUL prediction error for the B6 battery is below 10% for MAPE and less than 1 for RU L Error . This indicates higher accuracy compared to other prediction methods, along with improved robustness and practicality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辉辉发布了新的文献求助10
刚刚
刚刚
lululu发布了新的文献求助10
刚刚
刚刚
木木完成签到 ,获得积分10
1秒前
1秒前
悦己完成签到,获得积分10
1秒前
az发布了新的文献求助10
1秒前
ccm应助JCX采纳,获得10
1秒前
2秒前
bhfhq完成签到,获得积分10
2秒前
红糖小糍粑完成签到,获得积分20
3秒前
4秒前
天天快乐应助howey采纳,获得10
4秒前
4秒前
隐形曼青应助huangyao采纳,获得10
5秒前
5秒前
5秒前
顺利的伊应助geold采纳,获得10
5秒前
积极孤菱发布了新的文献求助10
5秒前
5秒前
柚子发布了新的文献求助10
5秒前
6秒前
丘比特应助专注灵凡采纳,获得10
6秒前
0gg发布了新的文献求助10
6秒前
Flicker完成签到 ,获得积分10
7秒前
苏书白应助LIU230907采纳,获得10
7秒前
setmefree发布了新的文献求助10
8秒前
能干豆芽发布了新的文献求助10
8秒前
9秒前
9秒前
ShowMaker应助fat采纳,获得20
10秒前
3268590946发布了新的文献求助10
11秒前
铁铁完成签到 ,获得积分10
11秒前
David发布了新的文献求助10
11秒前
学术小沈发布了新的文献求助30
12秒前
zhaow发布了新的文献求助10
13秒前
Ava应助守护星星采纳,获得30
13秒前
13秒前
杨振完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148815
求助须知:如何正确求助?哪些是违规求助? 2799847
关于积分的说明 7837294
捐赠科研通 2457351
什么是DOI,文献DOI怎么找? 1307824
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663