Performance of hippocampal radiomics models based on T2-FLAIR images in mesial temporal lobe epilepsy with hippocampal sclerosis

流体衰减反转恢复 海马硬化 医学 磁共振成像 核医学 海马结构 癫痫 无线电技术 颞叶 冠状面 癫痫外科 海马体 放射科 病理 内科学 精神科
作者
Xiaoyu Wang,Xiaoting Luo,Haitao Pan,Xiaoyang Wang,Shangwen Xu,Hui Li,Zhiping Lin
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:167: 111082-111082 被引量:5
标识
DOI:10.1016/j.ejrad.2023.111082
摘要

PurposePreoperative identification of hippocampal sclerosis (HS) is crucial to successful surgery for mesial temporal lobe epilepsy (MTLE). We aimed to investigate the diagnostic performance of hippocampal radiomics models based on T2 fluid-attenuated inversion recovery (FLAIR) images in MTLE with HS.MethodsWe analysed 210 cases, including 172 HS pathology-confirmed cases (100 magnetic resonance imaging [MRI]-positive cases [MRI + HS], 72 MRI-negative HS cases [MRI − HS]), and 38 healthy controls (HC). The hippocampus was delineated slice by slice on an oblique coronal plane by a T2-FLAIR sequence, perpendicular to the hippocampus's long axis, to obtain a three-dimensional region of interest. Radiomics were processed using Artificial Intelligence Kit software; logistic regression radiomics models were constructed. The model evaluation indexes included the area under the curve (AUC), accuracy, sensitivity, and specificity.ResultsThe respective AUC, accuracy, sensitivity, and specificity were 0.863, 81.4%, 78.0%, and 84.6% between the MRI − HS and HC groups in the training set and 0.855, 75.0%, 68.2%, and 81.8% in the test set; 0.975, 95.0%, 92.9%, and 98.0% between the MRI + HS and HC groups in the training set and 0.954, 88.7%, 90.0%, and 87.0% in the test set; and 0.912, 84.3%, 83.3%, and 86.5% between the MTLE and HC groups in the training set and 0.854, 79.7%, 80.8%, and 77.3% in the test set. The AUC values of the comparative radiomics models were > 0.85, indicating good diagnostic efficiency.ConclusionThe hippocampal radiomics models based on T2-FLAIR images can help diagnose MTLE with HS. They can be used as biological markers for MTLE diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
从容的巧曼完成签到 ,获得积分10
刚刚
687发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
猪头完成签到 ,获得积分10
2秒前
jia发布了新的文献求助10
4秒前
sssss完成签到 ,获得积分10
4秒前
4秒前
哈哈嘻嘻完成签到,获得积分10
4秒前
奶昔发布了新的文献求助10
5秒前
mrmrer完成签到,获得积分10
5秒前
Baibai发布了新的文献求助10
5秒前
5秒前
Ammon发布了新的文献求助10
6秒前
你大米哥完成签到 ,获得积分0
6秒前
才是自由完成签到,获得积分20
6秒前
6秒前
Cruffin发布了新的文献求助10
6秒前
NexusExplorer应助tan90采纳,获得10
7秒前
猪头关注了科研通微信公众号
7秒前
guangshuang发布了新的文献求助10
7秒前
贤惠的爆米花完成签到,获得积分10
8秒前
9秒前
linhongwei完成签到,获得积分10
9秒前
英姑应助Jared采纳,获得10
10秒前
善学以致用应助催催催采纳,获得10
11秒前
12138发布了新的文献求助10
12秒前
勾勾完成签到 ,获得积分10
12秒前
13秒前
可爱迷人的反派角色完成签到,获得积分10
13秒前
14秒前
mqq发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
陌上发布了新的文献求助10
15秒前
乐进完成签到,获得积分10
15秒前
16秒前
SciGPT应助OVO采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469224
求助须知:如何正确求助?哪些是违规求助? 4572331
关于积分的说明 14335257
捐赠科研通 4499207
什么是DOI,文献DOI怎么找? 2464985
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051