Performance of hippocampal radiomics models based on T2-FLAIR images in mesial temporal lobe epilepsy with hippocampal sclerosis

流体衰减反转恢复 海马硬化 医学 磁共振成像 核医学 海马结构 癫痫 无线电技术 颞叶 冠状面 癫痫外科 海马体 放射科 病理 内科学 精神科
作者
Xiaoyu Wang,Xiaoting Luo,Haitao Pan,Xiaoyang Wang,Shangwen Xu,Hui Li,Zhiping Lin
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:167: 111082-111082 被引量:2
标识
DOI:10.1016/j.ejrad.2023.111082
摘要

PurposePreoperative identification of hippocampal sclerosis (HS) is crucial to successful surgery for mesial temporal lobe epilepsy (MTLE). We aimed to investigate the diagnostic performance of hippocampal radiomics models based on T2 fluid-attenuated inversion recovery (FLAIR) images in MTLE with HS.MethodsWe analysed 210 cases, including 172 HS pathology-confirmed cases (100 magnetic resonance imaging [MRI]-positive cases [MRI + HS], 72 MRI-negative HS cases [MRI − HS]), and 38 healthy controls (HC). The hippocampus was delineated slice by slice on an oblique coronal plane by a T2-FLAIR sequence, perpendicular to the hippocampus's long axis, to obtain a three-dimensional region of interest. Radiomics were processed using Artificial Intelligence Kit software; logistic regression radiomics models were constructed. The model evaluation indexes included the area under the curve (AUC), accuracy, sensitivity, and specificity.ResultsThe respective AUC, accuracy, sensitivity, and specificity were 0.863, 81.4%, 78.0%, and 84.6% between the MRI − HS and HC groups in the training set and 0.855, 75.0%, 68.2%, and 81.8% in the test set; 0.975, 95.0%, 92.9%, and 98.0% between the MRI + HS and HC groups in the training set and 0.954, 88.7%, 90.0%, and 87.0% in the test set; and 0.912, 84.3%, 83.3%, and 86.5% between the MTLE and HC groups in the training set and 0.854, 79.7%, 80.8%, and 77.3% in the test set. The AUC values of the comparative radiomics models were > 0.85, indicating good diagnostic efficiency.ConclusionThe hippocampal radiomics models based on T2-FLAIR images can help diagnose MTLE with HS. They can be used as biological markers for MTLE diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助神勇太清采纳,获得10
1秒前
Rain_BJ完成签到,获得积分10
1秒前
2秒前
爱听歌的依霜完成签到,获得积分10
2秒前
skj你考六级完成签到,获得积分10
3秒前
simon完成签到,获得积分10
3秒前
汉堡包应助qq采纳,获得10
4秒前
hhhhh哈哈哈完成签到,获得积分10
4秒前
欧皇降霖发布了新的文献求助10
5秒前
慕青应助会飞的猪采纳,获得10
6秒前
Muller完成签到,获得积分10
7秒前
蜡笔小新发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
chen完成签到,获得积分10
9秒前
10秒前
天天快乐应助饱满的亦旋采纳,获得10
10秒前
砰砰彭发布了新的文献求助10
11秒前
12秒前
潮汐发布了新的文献求助10
12秒前
13秒前
浮游应助程青青采纳,获得10
13秒前
野性的山雁关注了科研通微信公众号
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助150
16秒前
李爱国应助cj采纳,获得10
17秒前
qq发布了新的文献求助10
17秒前
科研通AI6应助龙天宇采纳,获得10
17秒前
jxy发布了新的文献求助10
17秒前
aaa发布了新的文献求助10
18秒前
19秒前
万有引力发布了新的文献求助10
20秒前
xjc完成签到 ,获得积分10
20秒前
20秒前
zxx发布了新的文献求助10
20秒前
张作雅完成签到 ,获得积分10
21秒前
星星发布了新的文献求助10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143226
求助须知:如何正确求助?哪些是违规求助? 4341244
关于积分的说明 13519986
捐赠科研通 4181483
什么是DOI,文献DOI怎么找? 2293009
邀请新用户注册赠送积分活动 1293582
关于科研通互助平台的介绍 1236234