Performance of hippocampal radiomics models based on T2-FLAIR images in mesial temporal lobe epilepsy with hippocampal sclerosis

流体衰减反转恢复 海马硬化 医学 磁共振成像 核医学 海马结构 癫痫 无线电技术 颞叶 冠状面 癫痫外科 海马体 放射科 病理 内科学 精神科
作者
Xiaoyu Wang,Xiaoting Luo,Haitao Pan,Xiaoyang Wang,Shangwen Xu,Hui Li,Zhiping Lin
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:167: 111082-111082 被引量:5
标识
DOI:10.1016/j.ejrad.2023.111082
摘要

PurposePreoperative identification of hippocampal sclerosis (HS) is crucial to successful surgery for mesial temporal lobe epilepsy (MTLE). We aimed to investigate the diagnostic performance of hippocampal radiomics models based on T2 fluid-attenuated inversion recovery (FLAIR) images in MTLE with HS.MethodsWe analysed 210 cases, including 172 HS pathology-confirmed cases (100 magnetic resonance imaging [MRI]-positive cases [MRI + HS], 72 MRI-negative HS cases [MRI − HS]), and 38 healthy controls (HC). The hippocampus was delineated slice by slice on an oblique coronal plane by a T2-FLAIR sequence, perpendicular to the hippocampus's long axis, to obtain a three-dimensional region of interest. Radiomics were processed using Artificial Intelligence Kit software; logistic regression radiomics models were constructed. The model evaluation indexes included the area under the curve (AUC), accuracy, sensitivity, and specificity.ResultsThe respective AUC, accuracy, sensitivity, and specificity were 0.863, 81.4%, 78.0%, and 84.6% between the MRI − HS and HC groups in the training set and 0.855, 75.0%, 68.2%, and 81.8% in the test set; 0.975, 95.0%, 92.9%, and 98.0% between the MRI + HS and HC groups in the training set and 0.954, 88.7%, 90.0%, and 87.0% in the test set; and 0.912, 84.3%, 83.3%, and 86.5% between the MTLE and HC groups in the training set and 0.854, 79.7%, 80.8%, and 77.3% in the test set. The AUC values of the comparative radiomics models were > 0.85, indicating good diagnostic efficiency.ConclusionThe hippocampal radiomics models based on T2-FLAIR images can help diagnose MTLE with HS. They can be used as biological markers for MTLE diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助付佳彤采纳,获得10
1秒前
zqq123完成签到,获得积分10
1秒前
Dr.He完成签到,获得积分10
1秒前
丁牛青发布了新的文献求助10
2秒前
wsf2023发布了新的文献求助10
2秒前
2秒前
7777777发布了新的文献求助10
2秒前
Dr.He发布了新的文献求助10
4秒前
诗瑜完成签到,获得积分10
4秒前
我有一只小毛驴从来也不骑完成签到,获得积分10
4秒前
5秒前
licheng完成签到,获得积分10
5秒前
5秒前
Peng完成签到 ,获得积分10
5秒前
zanyez完成签到,获得积分10
6秒前
zcl发布了新的文献求助10
6秒前
7秒前
8秒前
JamesPei应助郑旭辉采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
吉吉国王的跟班完成签到 ,获得积分10
10秒前
11秒前
JJ完成签到,获得积分10
11秒前
顺心凡之完成签到,获得积分10
11秒前
李爱国应助Dr.He采纳,获得10
11秒前
13秒前
努力向上的小刘完成签到,获得积分10
13秒前
axt发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助燕子采纳,获得10
14秒前
15秒前
再睡亿分钟完成签到,获得积分10
15秒前
婷123完成签到,获得积分10
15秒前
顾矜应助CHOSEN1采纳,获得10
16秒前
传统的青完成签到,获得积分10
17秒前
小黄发布了新的文献求助10
17秒前
17秒前
科研通AI6应助张张采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952