计算机科学
合成孔径雷达
主管(地质)
基线(sea)
特征(语言学)
噪音(视频)
端口(电路理论)
雷达
高斯分布
人工神经网络
人工智能
遥感
数据挖掘
图像(数学)
电信
电子工程
地质学
工程类
语言学
海洋学
哲学
物理
量子力学
地貌学
作者
Xiaoxiao Yin,Shiyong Lan,Weikang Huang,Yitong Ma,Wenwu Wang,Hongyu Yang,Yilin Zheng
标识
DOI:10.1109/icip49359.2023.10223091
摘要
Ship detection in synthetic aperture radar (SAR) images is a major issue in maritime surveillance and port management. Existing challenges are mainly as follows: (1) Tiny ships are mixed with scattered noise spots on the sea. (2) Ships are present in extreme aspect-ratios and various scales. (3) The land background blurs the outline of coastal ships. To address these problems, we propose an efficient detection neural network (DLAHSD) that integrates the Multi-scale Feature Location Fusion (MFLF) module and the Auxiliary Detection Head (ADH) based CenterNet. In addition, we designed a Dynamic Elliptic Gaussian (DEG) module to label the heatmap of ships. Experimental results on the challenging SSDD dataset show that our model offers improved performance over the baseline methods. The codes will be available at https://github.com/SYLan2019/DLAHSD.
科研通智能强力驱动
Strongly Powered by AbleSci AI