P13.12.A SUBTYPES AND SURVIVAL ANALYSIS ANALYSIS OF PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA WITH RADIOMICS FEATURES

H&E染色 医学 比例危险模型 原发性中枢神经系统淋巴瘤 淋巴瘤 生存分析 队列 病理 肿瘤科 内科学 染色
作者
Noemie Barillot,Imilla Casado Hernández,Eva Kirasic,Caroline Houillier,Karima Mokhtari,Khê Hoang‐Xuan,Agustí Alentorn
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (Supplement_2): ii103-ii103
标识
DOI:10.1093/neuonc/noad137.346
摘要

Abstract BACKGROUND Primary Central Nervous System Lymphoma (PCNSL) is a rare and heterogeneous disease with dismal prognosis. Recently, four molecular clusters with clinical relevance have been identified with different potential therapeutic targets in each group. Nevertheless, multi-omics data collection and analysis are expensive and not adapted for clinical practice. Therefore, the identification of surrogate markers to identify PCNSL subtypes from routine data is required, like using hematoxylin and eosin slides from brain biopsies. MATERIAL AND METHODS We used a cohort of 108 patients and we selected the 5000 nuclei for each patient among roughly 1,5M nuclei. Once hematoxylin and eosin slides have been digitized, tessellated, normalized and the nuclei have been segmented and filtered with the computation of a solidity score, the PyRadiomics package provides us with more than 800 features for each nuclei. Firstly, we were interested in survival analysis. In a second time, we also used these features for training classification models. We used a partial least squared Cox model, which is a classic Cox model applied to latent components constructed by using linear combinations of the original variables. RESULTS Results for our first cohort are promising (C-index of 0.87, std 0.01), with a significant increase compared to the clinical features model (C-index of 0.68, std 0.03). We are now challenging these results with three other cohorts of brain and systemic lymphoma. CONCLUSION This study paves the way for a stratification of the clinical evolution based on the machine learning analysis of digital pathology in PCNSL that could be easily translated to a broad range of diseases or other brain tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肚子饿了发布了新的文献求助10
刚刚
1秒前
112我的完成签到,获得积分10
1秒前
1秒前
Yuna完成签到,获得积分10
1秒前
mjje完成签到,获得积分10
1秒前
2秒前
腾腾完成签到,获得积分10
2秒前
meng发布了新的文献求助10
2秒前
科研通AI6.1应助jjjj721采纳,获得10
3秒前
kcp发布了新的文献求助10
3秒前
3秒前
4秒前
chu发布了新的文献求助10
4秒前
万能图书馆应助Yxian采纳,获得10
4秒前
4秒前
sinlar发布了新的文献求助10
4秒前
着急的莫言完成签到,获得积分10
4秒前
付滋滋完成签到 ,获得积分10
4秒前
4秒前
6秒前
勤奋以山发布了新的文献求助30
6秒前
fan完成签到,获得积分10
6秒前
seven_yao完成签到,获得积分10
6秒前
Rixxed发布了新的文献求助10
7秒前
脑洞疼应助山茶采纳,获得10
7秒前
枯藤应助科研通管家采纳,获得10
7秒前
toutou应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
枯藤应助科研通管家采纳,获得10
7秒前
7秒前
toutou应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207