UAV-based road crack object-detection algorithm

计算机科学 趋同(经济学) 算法 目标检测 对象(语法) 计算机视觉 人工智能 路径(计算) 模式识别(心理学) 经济增长 经济 程序设计语言
作者
Xinyu He,Zhiwen Tang,Yubao Deng,Guoxiong Zhou,Yanfeng Wang,Liujun Li
出处
期刊:Automation in Construction [Elsevier]
卷期号:154: 105014-105014 被引量:69
标识
DOI:10.1016/j.autcon.2023.105014
摘要

Combining an object-detection algorithm with an unmanned aerial vehicle (UAV) can accelerate the detection of road cracks. To address the difficulties of intricate crack morphology, similar color to the road, and small crack area, this paper describes a UAV road crack object-detection algorithm using MUENet. The MUENet is primarily comprised of a main and auxiliary dual-path module (MADPM), an uneven fusion structure with transpose and inception convolutions (TI-UFS) and a E-SimOTA strategy. First, the MADPM is proposed to efficiently extract the essential morphological features of cracks. Subsequently, the TI-UFS is proposed to explore potential crack color characteristics. Finally, the E-SimOTA strategy accurately differentiates different types of cracks and accelerates network training convergence. The experimental results demonstrate that MUENet has the double benefits of precision and speed on a self-built dataset of UAV near-far scene images (UNFSI). This object-detection algorithm is more adaptable to crack objects than other mainstream object-detection algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zfd发布了新的文献求助10
刚刚
微光熠发布了新的文献求助10
刚刚
我是老大应助QINGLAN采纳,获得10
刚刚
hyt发布了新的文献求助10
1秒前
团子发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
轨迹应助科研通管家采纳,获得50
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
Wind应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Return应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
胡子西瓜完成签到,获得积分10
3秒前
cherish完成签到,获得积分10
3秒前
含蓄大雁完成签到,获得积分10
3秒前
seemefly完成签到,获得积分10
3秒前
凡雁完成签到,获得积分10
3秒前
4秒前
繁星jia完成签到 ,获得积分10
5秒前
5秒前
少年应助yahonyoyoyo采纳,获得10
5秒前
6秒前
李爱国应助姜博超采纳,获得10
6秒前
123发布了新的文献求助10
6秒前
mumuzi完成签到,获得积分10
6秒前
Mt发布了新的文献求助10
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277